Compact Sets

MATH 409 HNR Analysis on the Real Line, Texas A&M University

Joshua Im

April 29, 2025

Recall the definition of compact sets discussed:

Definition 0.1: Compact Sets

A set $S \subseteq \mathbb{R}$ is **compact** if every sequence in S has a convergent subsequence with limit in S.

This definition is enough for \mathbb{R} , but there is a generalized definition.

Metric Spaces

Compact sets are generally defined on *metric spaces*. What is this?

Definition 1.1: Metric Function

Let X be a nonempty set. A function $d: X \times X \to \mathbb{R}$ is called a **metric** function on X if

- d(x,y) > 0 for $\forall x, y \in X$ with $x \neq y$
- $d(x,y) = 0 \Leftrightarrow x = y$
- d(x,y) = d(y,x) for $\forall x, y \in X$
- $d(x,y) \le d(x,z) + d(z,y)$ for $\forall x, y, z \in X$.

Definition 1.2: Metric Space

A nonempty set X with a metric function $d: X \times X \to \mathbb{R}$ is called a metric space.

Example 1

 \mathbb{R} is a metric space with a metric function d(x,y) = |x-y|. We claim that the metric d(x,y) = |x-y| satisfies the four axioms of a metric function.

- If $x, y \in \mathbb{R}$ with $x \neq y$, then |x y| > 0.
- |x-x|=0, and if |x-y|=0 then x=y
- For all $x, y \in \mathbb{R}$, |x y| = |y x|.
- For all $x, y, z \in \mathbb{R}, |x y| \le |x z| + |z y|$ (triangle inequality).

Therefore, \mathbb{R} with d(x,y) = |x-y| is a metric space.

Example 2

Let X be the set of all bounded real-valued functions on $A(\neq \emptyset)$. For $f, g \in X$, we define $d(f,g) = \sup\{|f(x) - g(x)| : x \in A\}$. Since

- $0 \le |f(x) g(x)| \le |f(x)| + |g(x)| \le 2M$ for all $x \in A$
- $d(f,g) = 0 \Leftrightarrow f = g \text{ since } |f(x) g(x)| \le d(f,g) \text{ for } \forall x \in A$
- d(f,g) = d(g,f)
- $\sup\{|f(x) g(x)| : x \in A\} = \sup\{|f(x) h(x) + h(x) g(x)| : x \in A\} \le \sup\{|f(x) h(x)| : x \in A\} + \sup\{|h(x) g(x)| : x \in A\} = d(f, h) + d(h, g),$

d is a metric on X.

With this definition, we can generalize what we have done on \mathbb{R} to a metric space.

Definition 1.3: Neighborhood —

Let (X, d) be a metric space. For $\epsilon > 0$ and $p \in X$, the set

$$N_{\epsilon}(p) = \{x \in X : d(p, x) < \epsilon\}$$

is called an ϵ -neighborhood of p.

Definition 1.4: Bounded

Let (X, d) be a metric space. A set $E \subseteq X$ is bounded if there is $x_0 \in X$ and $M \in \mathbb{R}$ such that for all $x \in E$, $d(x, x_0) < M$.

Open and Closed Sets

From now on, denote X as a metric space. The proofs for results are omitted if they have the exact same proof with the case $X = \mathbb{R}$.

Definition 2.1: Interior Point

Let $E \subseteq X$ be a set. A point p is an **interior point** of E if for some $\epsilon > 0$, the ϵ -neighborhood of p is entirely in E. That is, $N_{\epsilon}(p) \subset E$.

Definition 2.2: Isolated Point

Let $E \subseteq X$ be a set. A point p is an **isolated point** of E if for some $\epsilon > 0$, p is the only point of E in the ϵ -neighborhood of p. That is, $N_{\epsilon}(p) \cap E = \{p\}$.

Definition 2.3: Boundary Point

Let $E \subseteq X$ be a set. A point p is a **boundary point** of E if any neighborhood of c contains points from both E and E^{\complement} . That is, $N_{\epsilon}(p) \cap E \neq \emptyset$ and $N_{\epsilon}(p) \cap E^{\complement} \neq \emptyset$.

Definition 2.4: Limit Point

Let $E \subseteq X$ be a set. A point p is a **limit point** of E if any ϵ -neighborhood of p contains a point of E other than p. That is, $N_{\epsilon}(p) \cap (E \setminus \{p\}) \neq \emptyset$.

Proposition.

p is a limit point of E if and only if there is a sequence of elements in $E \setminus \{p\}$ converging to p.

Proof. (\Leftarrow) Suppose the sequence $\{x_n\}$ of elements of $E \setminus \{p\}$ converges to p. Then $\forall \epsilon > 0$, $\exists N$ such that $\forall n \geq N$, $d(x_n, p) < \epsilon$. Thus p is a limit point of E.

 (\Rightarrow) If p is a limit point of E, choose $x_n \in S \setminus \{c\}$ with $d(x_n, p) < 1/n$, then $x_n \to p$.

Definition 2.5: Open and Closed Sets '

A set $S \subseteq \mathbb{R}$ is **open** if every point of S is an interior point. A set $S \subset \mathbb{R}$ is **closed** if it contains all of its limit points.

Note that the definitions coincide to the definitions discussed in class if we set $X = \mathbb{R}$.

Theorem 2.1

- A complement of an open set is closed.
- A complement of a closed set if open.

Theorem 2.2

Let (X, d) be a metric space.

- 1. If $\{\mathcal{O}_{\alpha}\}_{\alpha\in A}$ is a collection of open sets of X, then $\bigcup_{\alpha\in A}\mathcal{O}_{\alpha}$ is open. That is, an arbitrary union of open sets is open.
- 2. If $\{\mathcal{O}_1, \dots, \mathcal{O}_n\}$ is a finite collection of open sets of X, then $\bigcap_{j=1}^n \mathcal{O}_j$ is open. That is, a finite intersection of open sets is open.

Proof. (1) We may assume that $\bigcup \mathcal{O}_{\alpha} \neq \emptyset$. Let $p \in \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$, then $p \in \mathcal{O}_{\alpha}$ for some $\alpha \in A$. Since \mathcal{O}_{α} is open, $\exists \epsilon > 0$ such that $N_{\epsilon}(p) \subseteq \mathcal{O}_{\alpha} \subseteq \bigcup \mathcal{O}_{\alpha}$. Thus, p is an interior point of $\bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$.

(2) Assume $\bigcap_{j=1}^{n} \mathcal{O}_{j} \neq \emptyset$. Let $p \in \bigcap_{j=1}^{n} \mathcal{O}_{j}$. Then $p \in \mathcal{O}_{j}$ for $\forall j = 1, 2, ..., n$. Since each \mathcal{O}_{j} is open, $\exists \epsilon_{j} > 0$ such that $N_{\epsilon_{j}}(p) \subseteq \mathcal{O}_{j}$. Now, let $\epsilon = \min\{\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{j}\} > 0$, then $N_{\epsilon}(p) \subseteq N_{\epsilon_{j}}(p) \subseteq \mathcal{O}_{j}$ for all j. Therefore, $N_{\epsilon}(p) \subseteq \bigcap_{j=1}^{n} \mathcal{O}_{j}$, and p is an interior point.

Corollary *

Let (X, d) be a metric space.

- 1. If $\{C_1, \dots, C_n\}$ is a finite collection of closed sets of X, then $\bigcup_{j=1}^n C_j$ is closed. That is, a finite union of closed sets is closed.
- 2. If $\{C_{\alpha}\}_{{\alpha}\in A}$ is a collection of closed sets of X, then $\bigcap_{{\alpha}\in A} C_{\alpha}$ is closed. That is, an arbitrary intersection of closed sets is closed.

Proof. This is immediate from De Morgan's laws.

3

Compact Sets

Now, we state the general definition of compact sets. We abbreviate the notation (X, d) and use X for metric spaces. This still implies that d is the distance function.

Definition 3.1: Open Cover

Let X be a metric space, and $E \subseteq X$. A collection $\{\mathcal{O}_{\alpha}\}_{{\alpha}\in A}$ of open subsets of X is an **open cover** of E if

$$E\subseteq \bigcup_{\alpha\in A}\mathcal{O}_{\alpha}.$$

Definition 3.2: Compact Set

Let X be a metric space. A set $K \subseteq X$ is **compact** if every open cover of K has a finite subcover of K.

That is, if $\{\mathcal{O}_{\alpha}\}$ is an open cover of K, K is compact if $\exists \alpha_1, \ldots, \alpha_n \in A$ such that

$$K \subseteq \bigcup_{j=1}^{n} \mathcal{O}_{\alpha_{j}}.$$

Example 3

Every finite set is compact.

Example 4

I=(0,1) is not compact. Consider $\mathcal{O}_n=(0,\frac{n}{n+1})$ for $n\in\mathbb{N}$.. Then, $\{\mathcal{O}_n\}_{n\in\mathbb{N}}$ is an open cover of I. Indeed, if $x\in I$, then $\exists n_0\in\mathbb{N}$ such that $\frac{1}{n_0+1}<1-x$ by the Archedian property. Thus,

$$x \in \mathcal{O}_{n_0} \subseteq \bigcup_{n=1}^{\infty} \mathcal{O}_n.$$

But, no finite subcover can cover I. Assume to the contrary that a finite subcover $\{\mathcal{O}_{n_1}, \mathcal{O}_{n_2}, \dots, \mathcal{O}_{n_k}\}$ covers I. Let $N = \max\{n_1, \dots, n_k\}$, then we have

$$(0,1)\subseteq\bigcup_{j=1}^k\mathcal{O}_{n_j}=\left(0,\frac{N}{N+1}\right),$$

which gives a contradiction.

Properties of Compact Sets

Proofs in the section are done in a general metric space unless it mentions that the metric space is the real line.

Theorem 4.1: Heine-Borel

Every closed and bounded interval $[a, b] \subseteq \mathbb{R}$ is compact.

Proof. Let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ be an open cover of [a,b]. Define

$$E = \{r \in [a, b], [a, r] \text{ is covered by a finite subcover of } \mathcal{U}\}.$$

Clearly, E is nonempty (since $a \in E$) and bounded. Thus $\exists \gamma = \sup E$ in \mathbb{R} by the least upper bound property.

Claim. $\gamma = b$.

Suppose that $\gamma < b$. We will find a contradiction by constructing $s \in E$ such that $\gamma < s$. Since $\gamma \in U_{\alpha}$ for some open set $U_{\alpha} \in \mathcal{U}$, $\exists \epsilon > 0$ such that $N_{\epsilon}(\gamma) = (\gamma - \epsilon, \gamma + \epsilon) \subseteq U_{\alpha}$. Since $\gamma - \epsilon$ is not an upper bound of E, $\exists t \in E$ such that $\gamma - \epsilon < t < \gamma$. Thus, [0, t] is covered by finitely many sets

$$U_{\alpha_1}, U_{\alpha_2}, \cdots, U_{\alpha_n}$$

Now, choose any $s \in (\gamma, \gamma + \epsilon)$ such that s < b. Then,

$$[a,s] \subseteq \left(\bigcup_{j=1}^{n} U_{\alpha_j}\right) \cup U_{\alpha},$$

i.e. $s \in E$. Also since $\gamma \in E$, so this completes the proof.

Note that if $X = \mathbb{R}$, closed and bounded is equivalent to compact (so a compact set is also closed and bounded). In a general metric space, every closed and bounded set is compact, but not every compact set is closed and bounded.

Then, is this definition equivalent to the sequential definition for $X = \mathbb{R}$? Yes!

Theorem 4.2

Let $K \subseteq \mathbb{R}$. Then K is compact if and only if every sequence in K has a subsequence that converges to a point in K.

Proof. (\Rightarrow) Let $\{p_n\}$ be a sequence in K, and let $E = \{p_n : n = 1, 2, \dots\}$. If E is finite, then there exists a point $p \in E$ and a sequence $\{n_k\}$ with $n_1 < n_2 < \dots$ such that

$$p_{n_1} = p_{n_2} = \dots = p.$$

The sequence $\{p_{n_k}\}$ obviously converges to $p \in K$.

Let E be infinite. Since K is closed, E has a limit point $p \in K$. Choose n_1 such that $d(p, p_{n_1}) < 1$. Having chosen n_1, \ldots, n_{k-1} , choose an integer $n_k > n_{k-1}$ so that

 $d(p, p_{n_k}) < \frac{1}{k}.$

Such an integer n_k exists since every neighborhood of p contains infinitely many points of E. The sequence $\{p_{n_k}\}$ is a subsequence of $\{p_n\}$ converging to $p \in K$.

(\Leftarrow) Let p be a limit point of K. Then there exists a sequence of distinct points in K converging to p. Since each of its subsequence converge to p, hence $p \in K$, so K is closed.

Assume K is not bounded. For each $k \in \mathbb{N}$, choose a point $p_k \in K$ such that $d(p_k, p_0) \geq k$ for some fixed $p_0 \in X$. Then the sequence $\{p_k\}$ satisfies $d(p_k, p_0) \rightarrow \infty$, so it cannot have any convergent subsequence (since convergent sequences are bounded), a contradiction.

Since K is closed and bounded, it is compact.

Proving closedness and boundedness were enough to show that a set is compact, but this only applies when the metric space X is the real line. For general metric space, Heine-Borel does not apply.

Example 5

Let $X = \ell^{\infty}$ be the space of all bounded real sequences. That is,

$$X = \ell^{\infty} = \{ \{x_n\}_{n=1}^{\infty} : \sup |x_n| < \infty \}$$

with the metric $d(\lbrace x_n \rbrace, \lbrace y_n \rbrace) = \sup |x_n - y_n|$. Now, consider the set

$$A = \{e_n : n \in \mathbb{N}\}$$

with $e_n = (0, ..., 0, 1, 0, ..., 0)$ where only the *n*th term of the sequence is one, and the other terms are zero.

Then it is easy to see that A is both closed and bounded. However, A is not compact.

Note that for $m \neq n$, $d(e_m, e_n) = 1$. Consider $\mathcal{U} = \{U_n\}_{n \in \mathbb{N}}$ where $U_n = B(e_n, 1/2) = \{x \in X : d(x, e_n) < 1/2\}$. Then $e_n \in U_n$, and U_n contains exactly e_n . Thus \mathcal{U} is an open cover of A, but A does not have a finite subcover (since A is infinite).

This shows that one needs more constraints to imply that a set if compact in a general metric space.

Theorem 4.3

Let X be a metric space. If $K \subseteq X$ is compact, then

- 1. K is closed
- 2. If $F \subseteq K$ and F is closed, then F is compact.

Proof. (1) It is enough to show that K^{\complement} is open. Let $p \in K^{\complement}$. For each $q \in K$, Let $\epsilon_q = d(p,q)/2$. Then, $N_{\epsilon_q}(p) \cap N_{\epsilon_q}(q) = \emptyset$. Since $\{N_{\epsilon_q}(q)\}_{q \in K}$ is an open cover of K, there exists q_1, q_2, \ldots, q_n such that

$$K \subseteq \bigcup_{j=1}^{n} N_{\epsilon_{q_j}}(q_j).$$

Let $\epsilon = \min\{q_1, \dots, q_n\}$. Then, $N_{\epsilon}(p)$ does not intersect with $N_{\epsilon_{q_j}}(q_j)$ for all $j = 1, \dots, n$. Thus, $N_{\epsilon}(p) \subseteq K^{\complement}$, which proves that K is closed.

(2) Let $\{\mathcal{O}_{\alpha}\}_{{\alpha}\in A}$ be an open cover of F. Then,

$$\{\mathcal{O}_{\alpha}\}_{\alpha\in A}\cup F^{\complement}$$

is an open cover of K. Since K is compact, there is a finite subcollection of $\{\mathcal{O}_{\alpha}\}_{\alpha\in A}\cup F^{\complement}$ containing K, which also contains of F.

Corollary '

If F is closed and K is compact, then $F \cap K$ is compact.

The previous theorem gives a simple proof for generalized Cantor's intersection property.

Corollary: Cantor's Intersection Property

If $K_1 \supseteq K_2 \supseteq \dots$ is a nested family of nonempty compact sets, then their intersection $K = \bigcap_{n=1}^{\infty} K_n$ is nonempty and compact.

Proof. Since K is a closed subset of a compact set K_n , it is compact. To prove that K is nonempty, define a sequence $\{x_n\}$ with $x_i \in K_i$. Then $\{x_n\} \subseteq K$. If x_n converges to x, then since K is closed, $x \in K$. This shows that K is nonempty.

Theorem 4.4

The continuous image of a compact set is compact.

Proof. Suppose $K \in X$ is compact, and $f: K \to f(K)$ is continuous. Let $\{\mathcal{O}_{\alpha}\}_{\alpha \in A}$ be an open cover of f(K). Then $f(K) \subseteq \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$. Since the preimage of an open

set is open, we have

$$K \subseteq \bigcup_{\alpha \in A} f^{-1}(\mathcal{O}_{\alpha}),$$

which gives that $\{f^{-1}(\mathcal{O}_{\alpha})\}_{\alpha\in A}$ is an open cover of K. Since K is compact, there is a finite subcover of this open cover, i.e. there is $f^{-1}(\mathcal{O}_{\alpha_1}), f^{-1}(\mathcal{O}_{\alpha_2}), \ldots, f^{-1}(\mathcal{O}_{\alpha_n})$ such that

$$K \subseteq \bigcup_{i=1}^{n} f^{-1}(\mathcal{O}_{\alpha_i}).$$

Therefore

$$f(K) \subseteq \bigcup_{i=1}^{n} \mathcal{O}_{\alpha_i},$$

so f(K) is compact.

Remark.

If $X = \mathbb{R}$, then the continuous image of a closed set need not be closed.

Remark.

If $X = \mathbb{R}$, then the continuous image of a bounded set need not be bounded.

This gives the Extreme value theorem.

Corollary: Extreme Value Theorem *

Let $K \subseteq \mathbb{R}$ be a compact set. If $f: K \to \mathbb{R}$, then f(x) attains its minimum and maximum value on K.

5

References

- 1. Abbott, S. (2015). Understanding Analysis (2nd ed.). Springer.
- Rudin, W. (1976). Principles of Mathematical Analysis (3rd ed.). McGraw-Hill.
- 3. Stoll, M. (2021). Introduction to Real Analysis (3rd ed.). CRC Press.