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Recall the definition of compact sets discussed:

Definition 0.1: Compact Sets

A set S C R is compact if every sequence in S has a convergent subsequence
with limit in S.

This definition is enough for R, but there is a generalized definition.

Metric Spaces

Compact sets are generally defined on metric spaces. What is this?

= Definition 1.1: Metric Function

Let X be a nonempty set. A function d : X x X — R is called a metric
function on X if

d(z,y) > 0 for Vo, y € X with z £y
d(z,y) =0z =y

d(z,y) = d(y,z) for Vo, y € X

d(z,y) <d(z,z)+d(z,y) for Yz, y, z € X.

— Definition 1.2: Metric Space

A nonempty set X with a metric function d : X x X — R is called a metric
space.
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Example 1

R is a metric space with a metric function d(z,y) = |z —y|. We claim that the
metric d(x,y) = |x — y| satisfies the four axioms of a metric function.

o If x, y € R with  # y, then |z — y| > 0.

o [r—z/=0,andif |zt —y|=0thenz =y

e Forallz, yeR, |z —y| =]y — x|

e Forall z, y, z € R, |[x —y| < |z — z| + |z — y| (triangle inequality).

Therefore, R with d(z,y) = | — y| is a metric space.

Example 2

Let X be the set of all bounded real-valued functions on A(# 0). For f, g € X,
we define d(f, g) = sup{|f(z) — g(x)| : @ € A}. Since

o 0<|f(z) —g(@)| < |f(2)| + |g(x)] <2M for all x € A
e d(f,g) =0« f=gsince |f(z) — g(x)| < d(f,g) for Vo € A
e d(f,g9) =dl(g,[)

o sup{|f(z) — g(z)| : = € A} = sup{|f(x) — h(x) + h(z) — g(z)| : = €
A} < sup{|f(z) — h(z)|] : = € A} + sup{|h(z) — g(z)|] : = € A} =
d(f,h) +d(h, g),

d is a metric on X.

With this definition, we can generalize what we have done on R to a metric space.

= Definition 1.3: Neighborhood

Let (X, d) be a metric space. For € > 0 and p € X, the set
Ne(p) ={z € X : d(p,z) < ¢}

is called an e-neighborhood of p.

= Definition 1.4: Bounded

Let (X, d) be a metric space. A set E C X is bounded if there is 2o € X and
M € R such that for all z € E, d(z,z9) < M.
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Open and Closed Sets
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From now on, denote X as a metric space. The proofs for results are omitted if
they have the exact same proof with the case X = R.

= Definition 2.1: Interior Point

Let F C X be a set. A point p is an interior point of F if for some € > 0,
the e-neighborhood of p is entirely in E. That is, N(p) C E.

= Definition 2.2: Isolated Point

Let E C X be aset. A point p is an isolated point of F if for some € > 0, p
is the only point of E in the e-neighborhood of p. That is, N.(p) N E = {p}.

= Definition 2.3: Boundary Point

Let £ C X be aset. A point pis a boundary point of FE if any neighborhood
of ¢ contains points from both E and EC. That is, N.(p) N E # 0 and
N.(p) N EC 0.

= Definition 2.4: Limit Point

Let F C X be a set. A point p is a limit point of F if any e-neighborhood
of p contains a point of E other than p. That is, N.(p) N (E\ {p}) # 0.

Proposition.

p is a limit point of E if and only if there is a sequence of elements in E \ {p}
converging to p.

Proof. (<) Suppose the sequence {z,} of elements of E\ {p} converges to p. Then
Ve > 0, 3N such that Vn > N, d(z,,p) < e. Thus p is a limit point of E.

(=) If p is a limit point of E, choose =, € S\ {¢} with d(z,,p) < 1/n, then
Ty — P. |

Definition 2.5: Open and Closed Sets

A set S C R is open if every point of S is an interior point. A set S C R is
closed if it contains all of its limit points.

Note that the definitions coincide to the definitions discussed in class if we set
X =R
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= Theorem 2.1
e A complement of an open set is closed.

e A complement of a closed set if open.

= Theorem 2.2

Let (X, d) be a metric space.

1. I {O4}aea is a collection of open sets of X, then U O, is open. That
acA
is, an arbitrary union of open sets is open.

n
2. If {04, ---,0,} is a finite collection of open sets of X, then ﬂ O; is
j=1
open. That is, a finite intersection of open sets is open.

Proof. (1) We may assume that |J O, # 0. Let p € U Og, then p € O, for some
a€cA
a € A. Since O, is open, Je > 0 such that N.(p) C O, C |JO,. Thus, p is an

interior point of U O,
acA

(2) Assume ﬂ O #0. Let p e ﬂ O;. Thenp € O; for Vj =1, 2, ..., n. Since
j=1 j=1
each O; is open, de; > 0 such that N, (p) € O;. Now, let € = min{ey, €, -+ , €5} >

0, then Nc(p) € N, (p) € O; for all j. Therefore, N.(p) C m Oj, and p is an
j=1
interior point. |

= Corollary

Let (X, d) be a metric space.

n
1. If {C4,---,C,} is a finite collection of closed sets of X, then U C;is
j=1
closed. That is, a finite union of closed sets is closed.

2. If {Ca}aeca is a collection of closed sets of X, then ﬂ C, is closed.
acA
That is, an arbitrary intersection of closed sets is closed.

Proof. This is immediate from De Morgan’s laws. |
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Compact Sets
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Now, we state the general definition of compact sets. We abbreviate the notation
(X,d) and use X for metric spaces. This still implies that d is the distance function.

— Definition 3.1: Open Cover

Let X be a metric space, and E C X. A collection {O, }aca of open subsets
of X is an open cover of F if

EC an.

acA

= Definition 3.2: Compact Set

Let X be a metric space. A set K C X is compact if every open cover of
K has a finite subcover of K.

That is, if {O,} is an open cover of K, K is compact if 3oy, ..., o, € A such
that
n
K C U O,
j=1
Example 3

Every finite set is compact.

Example 4
I'=(0,1) is not compact. Consider O, = (0, ;;47) for n € N.. Then, {Oy, }nen
is an open cover of I. Indeed, if x € I, then Iny € N such that n01+1 <l-—=x

by the Archedian property. Thus,
z €O, C O,
n=1

But, no finite subcover can cover I. Assume to the contrary that a finite

subcover {On,,Opy, ..., O, } covers I. Let N = max{ny,---,ny}, then we
have
g N
0,1) C On, =0, —— |,
he Jyl ’ ( N+ 1)

which gives a contradiction.
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Properties of Compact Sets
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Proofs in the section are done in a general metric space unless it mentions that
the metric space is the real line.

Theorem 4.1: Heine-Borel
|_Every closed and bounded interval [a,b] C R is compact.

Proof. Let U = {U, }aca be an open cover of [a,b]. Define
E = {r € [a,b],[a,r] is covered by a finite subcover of U} .

Clearly, E is nonempty (since a € E) and bounded. Thus 3y = sup F in R by the
least upper bound property.

I Claim. v =b.

Suppose that v < b. We will find a contradiction by constructing s € E such
that v < s. Since v € U, for some open set U, € U, Fe > 0 such that N(v) =
(v —€¢,v+¢€) C U,. Since v — € is not an upper bound of E, 3t € E such that
v —€ <t <~. Thus, [0,t] is covered by finitely many sets

UalaU(,Kg?.'. )UOln'

Now, choose any s € (7,7 + €) such that s < b. Then,

la,s] € | |J Vs, | UUa,
j=1

i.e. s € E. Also since v € F, so this completes the proof. |

Note that if X = R, closed and bounded is equivalent to compact (so a compact set
is also closed and bounded). In a general metric space, every closed and bounded
set is compact, but not every compact set is closed and bounded.

Then, is this definition equivalent to the sequential definition for X = R? Yes!

Theorem 4.2

Let K C R. Then K is compact if and only if every sequence in K has a
subsequence that converges to a point in K.

Proof. (=) Let {p,} be a sequence in K, and let £ = {p, : n=1,2,---}. f E
is finite, then there exists a point p € E and a sequence {nj} with n; < ng < ---
such that

Pny =Pny =" =D-
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The sequence {p,, } obviously converges to p € K.

Let E be infinite. Since K is closed, E has a limit point p € K. Choose n; such

that d(p,pn,) < 1. Having chosen nq, ..., ng_1, choose an integer ny > ng_1 so

that 1
d(papnk) < E

Such an integer ny exists since every neighborhood of p contains infinitely many

points of E. The sequence {p,, } is a subsequence of {p,} converging to p € K.

(<) Let p be a limit point of K. Then there exists a sequence of distinct points
in K converging to p. Since each of its subsequence converge to p, hence p € K,
so K is closed.

Assume K is not bounded. For each k € N, choose a point pr € K such that
d(pk,po) > k for some fixed pg € X. Then the sequence {py} satisfies d(px, po) —
00, S0 it cannot have any convergent subsequence (since convergent sequences are
bounded), a contradiction.

Since K is closed and bounded, it is compact. |
Proving closedness and boundedness were enough to show that a set is compact,

but this only applies when the metric space X is the real line. For general metric
space, Heine-Borel does not apply.

Example 5
Let X = £ be the space of all bounded real sequences. That is,

X =07 = {zn}nly s sup|2n| < oo}
with the metric d({z,}, {yn}) = sup |z, — yn|- Now, consider the set
A={e, :neN}
with e,, = (0,...,0,1,0,...,0) where only the nth term of the sequence is one,

and the other terms are zero.

Then it is easy to see that A is both closed and bounded. However, A is not
compact.

Note that for m # n, d(em,e,) = 1. Consider U = {U, }nen where U, =
B(en,1/2) = {z € X : d(z,e,) < 1/2}. Then e, € U,, and U, contains
exactly e,,. Thus U is an open cover of A, but A does not have a finite subcover
(since A is infinite).

This shows that one needs more constraints to imply that a set if compact in a
general metric space.
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= Theorem 4.3
Let X be a metric space. If K C X is compact, then

1. K is closed

2. If F C K and F is closed, then F' is compact.

Proof. (1) Tt is enough to show that KU is open. Let p € KC. For each g € K, Let
€g = d(p,q)/2. Then, N, (p) NN, (q) = 0. Since { N, (q)}qex is an open cover of
K, there exists q1, qo, ..., g, such that

n
K - U Neqj (Qj)'
j=1

Let € = min{q1,- - ,qn}. Then, N.(p) does not intersect with Ne,, (g;) for all
j=1,...,n. Thus, N(p) C KC, which proves that K is closed.

(2) Let {On}aca be an open cover of F. Then,
{Oa}aeA U FC

is an open cover of K. Since K is compact, there is a finite subcollection of
{Oa}aea U FC containing K, which also contains of F. |

Corollary
|_If F'is closed and K is compact, then F'N K is compact.

The previous theorem gives a simple proof for generalized Cantor’s intersection
property.

Corollary : Cantor’s Intersection Property

If K1 D Ky O ... is a nested family of nonempty compact sets, then their

o0
intersection K = ﬂ K,, is nonempty and compact.

n=1

Proof. Since K is a closed subset of a compact set K, it is compact. To prove
that K is nonempty, define a sequence {z,,} with z; € K;. Then {z,} C K. If z,
converges to x, then since K is closed, z € K. This shows that K is nonempty. W

Theorem 4.4
The continuous image of a compact set is compact.
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Proof. Suppose K € X is compact, and f : K — f(K) is continuous. Let {O4 }aca

be an open cover of f(K). Then f(K) C U Og. Since the preimage of an open
a€cA

K< f(0a),

acA

set is open, we have

which gives that {f~1(O,)}aca is an open cover of K. Since K is compact, there
is a finite subcover of this open cover, i.e. there is f™1(O4,), f71(Ony), -,
f71(O.,) such that

KelJFoun)
=1

Therefore .
i=1
so f(K) is compact. [
Remark.

If X =R, then the continuous image of a closed set need not be closed.

Remark.

If X =R, then the continuous image of a bounded set need not be bounded.

This gives the Extreme value theorem.

Corollary : Extreme Value Theorem

Let K C R be a compact set. If f: K — R, then f(z) attains its minimum
and maximum value on K.
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