
The Wavelet-Galerkin Methods for PDEs

Joshua Im, Colin Neaville

June 21, 2025

Abstract

The wavelet-Galerkin method (WGM) is a wavelet-based method of finding approxi-
mate solutions to partial differential equations. The method involves approximating
the solution of the PDE as a finite linear combination of scaling functions in V0:

u(x, t) ≈
N∑

k=−M

Ûk(t)ϕ(x− k).

The coefficients Ûk(t) are then solved for such that an integral condition called the
Galerkin condition is satisfied. This condition ensures that the approximate solution
is the best solution in the subspace of V0 in which the solution is approximated.

Since the WGM yields an approximate solution, it will not satisfy the PDE exactly.
The error is especially significant for PDEs in which the solution decays slowly or
involves shocks or high frequencies.

Here we discuss a few methods found in the literature which can be applied to solve
PDEs for which the unmodified WGM does not provide an accurate solution. The
first method involves scaling the domain of the PDE by a factor of 1/ϵ by the change
of variables y = x/ϵ, where ϵ ≪ 1 is small. This effectively expands the features of
the solution, so that they can be accurately captured by the scaling functions in V0.
The second method involves scaling the scaling functions down by a factor of 2n by
approximating the solution in Vn instead of in V0:

u(x, t) ≈
Nn∑

k=−Mn

Ûk(t)ϕn,k(x).

Of course, the MRA which is used to approximate the solution has an effect on the
accuracy of the WGM. Different scaling functions have different properties such as
continuity, smoothness, and rate of decay at infinity. We will therefore investigate the
accuracy of solutions obtained using different scaling functions as the basis for the
approximation. In particular, we investigate accuracy when using the Shannon versus
Daubechies scaling functions.

1



1 Background

1.1 Shannon and Daubechies Scaling Functions

In this section, we briefly describe each of the scaling functions to be used in our investigation
of the WGM.

The Shannon scaling function has the closed form:

ϕ(sha)(x) = sinc(x) =

{
sin(πx)

πx
x ̸= 0

1 x = 0.

Unlike other scaling functions such as the Haar and linear spline scaling functions, ϕ(sha)

has the advantage of being continuous and smooth and is thus able to more accurately
represent smooth solutions to PDEs. The disadvantage of using ϕ(sha) is that it is not
compactly supported and has a relatively slow rate of decay at infinity. It should therefore
in theory not be ideal to solve a PDE using the Shannon scaling function when the solution
is expected to be compactly supported or decay quickly. We shall investigate how the slow
decay rate of ϕ(sha) affects solutions obtained using the WGM.

The family of Daubechies scaling functions are obtained in the following manner. We begin
by choosing the coefficients pk associated with the member of the family of scaling functions
to be constructed (e.g. Db4, Db6) and define the polynomial P (z) = (1/2)

∑
k pkz

k. We
then define

ϕ0(x) = ϕ(Haar)(x) = χ[0,1)(x) (1)

ϕn(x) =
∑
k

pkϕn−1(2x− k) for n ≥ 1. (2)

This sequence of functions can be shown to converge pointwise and in mean to a function
ϕ(Daub) which, together with the sequence of spaces span{ϕ(2jx−k), k ∈ Z} ⊂ L2(R), forms
an MRA called the Daubechies MRA. As we work up the Daubechies hierarchy, the scaling
function becomes increasingly continuously differentiable. The smoothness of the scaling
function is significant to the WGM, as the solutions to many PDEs are highly smooth
and therefore require smooth scaling functions to be approximated accurately. We shall
investigate how the differing smoothness of members of the Daubechies family of scaling
functions affects the accuracy of the WGM by comparing resulting solutions obtained using
the Db4 and Db6 scaling functions.

1.2 The Wavelet-Galerkin Method

We now give a detailed description of how to apply the WGM to a general PDE. We follow
the process described in [9] with clarifying details filled in.

Suppose that U(x, t) is a solution to the PDE

F (U,Ut, . . . , Ux, Uxx, . . . ) = 0. (3)

2



We want to approximate the solution U in terms of scaling functions.

U(x, t) ≈
∑
k∈Z

Ûk(t)ϕ(x− k) (4)

Note that this expansion in terms of scaling functions is not exact as this approximation is
in V0 and only so many details of the solution can be captured by functions in V0.

We could instead approximate the solution with a function in Vn := span{ϕn,k(x), k ∈ Z} =
span{2n/2ϕ(2nx − k), k ∈ Z}. As n increases, the approximation of U in Vn becomes more
accurate, though requires heavier computation. The details for approximation in Vn are
explained in subsequent sections.

Here we project U onto V0 obtaining (4). By projecting onto V0, we are assuming the
smallest scale of variation to be the integers. There are multiple methods which can be used
to apply these methods to a problem in which a smaller scale is required. This process is
illustrated concretely in the section on numerical implementation of the Wavelet-Galerkin
method.

We now further approximate U by removing all but finitely many terms from the projection.
This is equivalent to projecting the approximation of U in V0 to a finite-dimensional subspace
of V0. This gives

U(x, t) ≈
N∑

k=−M

Ûk(t)ϕ(x− k). (5)

We can now see why the decay rate of U is important. If U is compactly supported, then
U should be zero outside of some bounded interval, so we can include only the terms which
contribute to within that bounded interval. Therefore, in the case that U is compactly
supported, the equality in (5) can be made to be exact. If U is not compactly supported,
fast decay would still give an approximation with high accuracy as we are dropping the terms
that contribute less to U . As the decay rate decreases, the accuracy will also decrease.

Let Û be the approximation of U by (5). Since U is the solution to the equation (3) and Û

is an approximation of it, we would want to make Û also satisfy the equation with a very
small error. That is,

F (Û , Ût, . . . , Ûx, Ûxx, . . . ) ≈ 0.

The value of F with Û is not actually zero, as Û is a finite-dimensional projection of U ,
and there is therefore an approximation error. There is a residue R(x, t) resulting in the
difference of the values of F . That is,

R(x, t) = F (Û , Ût, . . . , Ûx, Ûxx, . . . )− F (U,Ut, . . . , Ux, Uxx, . . . )

= F (Û , Ût, . . . , Ûx, Ûxx, . . . ).

Hence we want Û to satisfy R(x, t) ≈ 0. Since it is hard to find such Û , we reduce the
problem to a weaker condition, called the Galerkin condition.

We say that Û satisfies the Galerkin condition if ⟨R(x, t), v⟩ = 0 for each v ∈ V0. That is,∫ ∞

−∞
R(x, t) · ϕ(x− k) dx = 0 (6)

3



for each k ∈ Z. This is a natural analogue inside V0 to solving the equation weakly in
L2(R). Such Û making R(x, t) satisfying the Galerkin condition will be the best approximate
solution to (3) within V0.

As we have the approximation of U by (5), we need to find the corresponding coefficients

Ûk for each k. Since the expansion Û runs from k = −M , −M + 1, . . . , N , for each
k ∈ {−M,−M +1, . . . , N}, we use the Galerkin’s condition. If k is fixed, then the equation∫ ∞

−∞
F

(
N∑

j=−M

Ûj(t)ϕ(x− j), . . .

)
· ϕ(x− k) = 0

will give an equation with unknowns Û−M , Û−M+1, . . . , ÛN . Repeating the process for each
k ∈ {−M,−M + 1, . . . , N}, we get a system of equations with M + N + 1 equations and

M +N + 1 unknowns, which are Û−M , Û−M+1, . . . , ÛN .

Solving for these coefficients will give Û , and hence the approximation to the solution of the
equation (3). If F is nonlinear, then the system will be nonlinear in the coefficients Ûk(t),
which can be solved using iterative methods. If F is linear, then the system will also be
linear in the coefficients, which is easy to solve.

2 Improving the approximations

Before proceeding with the details of solving particular PDEs with the wavelet Galerkin
method we shall investigate methods by which the accuracy of solutions can be improved.

Recall that our approximation (5) is a projection of U(x, t) onto the subspace V0 of L2(R).
Since V0 is a low-resolution subspace of L2(R), Û can only capture limited features of U .
Some factors that influence the amount of error resulting from the projection onto V0 include:

• How much the energy of U is contained in V0,

• The smoothness and steepness of U ,

• Whether U is compactly supported and its rate of decay if its support is not finite.

If most of the energy of U is contained in V0, projecting U to V0 loses very little, while if a lot
of energy is outside of V0 (e.g. in high frequencies) then the projection may miss important
parts of U . If U itself is smooth and slow-varying, the functions ϕ(x − k) ∈ V0 can still
represent it well, even though they are slowly-varying and with low frequency. However, if
U has high-frequency behaviors like shocks and jumps, then V0 cannot capture all of those
features. Finally, if U is compactly supported, then only finitely ϕ(x− k) functions will be

needed, but if U is not, then truncating Û from −M to N will introduce noticeable errors.

In the case where we need a projection with higher accuracy, there are two methods which
can be applied.

4



2.1 Approximation inside Vn

Since the subspaces form a sequence

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R),

for nonnegative integers n and m, Vn is finer than Vm if and only if n > m. Thus V0 is the
coaresest space, which is expected that that the projection of U onto V0 only captures low-
frequency parts of U . To capture more detail, we instead use Vn for some positive integer
n. Since the projection of U onto Vn is of the form

Û(t) =
N∑

k=−M

Ûk(t)2
n/2ϕ(2nx− k).

Since the scaling functions ϕ(2nx−k) in Vn are compressed compared to the scaling functions
ϕ(x− k) in V0, this allows us to capture higher frequency components of U , improving the
accuracy of the approximation. This is because since the projection error is given by

∥U − Û∥L2(R),

increasing n will reduce the error. Precisely, if U ∈ Hs(R) where Hs(R) is the Sobolev space
of smoothness s, then (see [8])

∥U − Û∥L2(R) ≤ C2−ns∥U∥Hs (7)

where n is the scale level of the subspace Vn used in the approximation. Thus by choosing a
sufficiently large n, we can make the error arbitrarily small. However, more basis functions
are needed. If the finite projection of U onto V0 ran from k = −M to N , there were
M +N +1 basis functions, but in Vn, k should run approximately from −2n ·M to 2n ·N , so
there should be approximately 2n(M +N + 1) basis functions. For simplicity, we say that
the sum runs from −Mn to Nn. The amount of basis functions will approximately multiply
by 2 if we decide to project onto the next finer space, i.e. Vn+1.

Since the Galerkin condition is satisfied if ⟨R(x, t), v⟩ = 0 for each v ∈ Vn, we should have∫ ∞

−∞
R(x, t) · ϕ(2nx− k) dx = 0 (8)

for each k ∈ Z. Here the scaling factor 2n/2 is omitted since the right-hand side is zero.
Now, the equation∫ ∞

−∞
F

(
Nn∑

j=−Mn

Ûj(t)ϕ(2
nx− j), . . .

)
· ϕ(2nx− k) = 0

will give the system of ODEs with unknowns Û−Mn , Û−M+1, . . . , ÛNn . Thus as n increases,
computational cost also increases, as the system of ODEs will involve more variables and
coefficients.

5



2.2 Scaling the equation

Recall that approximation the solution U by the projection onto V0 had a disadvantage that
the scaling functions ϕ(x − k) could not capture the high-frequency behaviors. Instead of
using compressed scaling functions, we may rescale the domain of the equation to improve
the approximation.

Suppose, for simplicity, U(x, t) is a solution to the equation (3). Define a new function

Ũ(y, t) = U(x, t),

where x = ϵy and ϵ ≪ 1 is a small scaling factor. This process is called modulation and used
frequently in solving PDEs (see [7], [1]). By this process, the partial derivatives becomes

Ũy = ϵUx, Ũyy = ϵ2Uxx, and so on. Note that the time derivatives are unaffected by the
rescaling, and only spatial derivatives introduce powers of ϵ. Thus

Ux =
1

ϵ
Ũy

Uxx =
1

ϵ2
Ũyy,

and so on. Thus the equation (3) becomes

F

(
Ũ (ϵy, t) , Ũt (ϵy, t) , . . . ,

1

ϵ
Ũy(ϵy, t),

1

ϵ2
Ũyy(ϵy, t), . . .

)
= 0. (9)

The advantage is that if U(x, t) has rapid oscillations, its frequency in Ũ(y, t) is much

lower. That is, Ũ varies much more slowly in y. High-frequency behaviors are reduced
with frequency, so now the scaling functions in V0 will capture much more behaviors of Ũ
than the behaviors of U . Thus there is no need to use scaling functions in Vn for higher n,
and the accuracy generally increases. For the error, in the original equation, we had the
inequality (7). This corresponds to the inequality

∥Ũ − ̂̃U∥L2(R) ≤ Cϵ∥U∥Hs

with n = 0, assuming U , Ũ ∈ Hs(R) (see [7], [1]), which requires justification but formally
is. This suggests that domain scaling is roughly equivalent to increasing n in frequency
resolution.

However, since the domain is stretched, we need more basis functions. In the original
projection, if we used basis functions from k = −M to N , then in the scaling, these functions
are used only to represent −ϵM to ϵN in the original equation. Thus we need approximately
1/ϵ multiple of the number of the basis function we use for the original approximation, which
is still a lot of them.

2.3 Comparison of two methods and further improvements

The two methods both have advantages and disadvantages. Projection onto Vn does not
change the equation (3) itself, so the domain is fixed and Galerkin formulation directly

6



applies. However, the amount of basis functions doubles at every level, so the number of
calculations increases exponentially.

Rescaling the domain will significantly reduce the amount of basis functions needed, and
will still capture high-frequency behaviors. However, the coefficients of the equation change,
and we still need a lot of basis functions.

If the solution U does not contain high-frequency features everywhere, there is no need to use
the compressed scaling functions on the interval in which does not contain high-frequency
features. In this case, if the approximation is done by projection onto Vn, it is possible to
combine scaling functions from different levels Vn. In the interval where U is smooth, we
can use scaling functions for lower levels, i.e. Vn with small n, then we only have to use
compressed scaling functions, i.e. Vn with large n where U has high-frequency behaviors.
For rescaling the domain, we may only stretch the interval with high-frequency behaviors.
This local projection depending on the behavior of U will reduce the computational cost,
but in this paper we focus on a single-level approximation using Vn for a fixed n.

In practice, domain rescaling is useful when the entire solution exhibits high-frequency
structure. However, when high-frequency components are spatially localized, an adaptive
projection into different Vn regions is often more efficient.

3 Examples

3.1 Heat equation

Consider the heat equation

∂u

∂t
=

∂2u

∂x2
, x ∈ (0, 1), t > 0 (10)

with the boundary conditions
u(0, t) = u(1, t) = 0

and initial condition
u(x, 0) = sin(πx).

The solution of this problem is clearly going to involve a minimum scale of variation much
smaller than the scale of the integers. We must therefore either scale the PDE up or scale
the scaling functions down.

To scale the PDE, we make the change of variables y = 2ℓx where ℓ is an positive integer.
This results in

∂U

∂t
= 4ℓ

∂2U

∂y2
, y ∈ (0, 2ℓ), t > 0 (11)

where U(y, t) is the solution u(x, t) rewritten in terms of the new variable y. The boundary
conditions become

U(0, t) = U(2ℓ, t) = 0

and initial conditions
U(y, 0) = sin(2−ℓπy).

7



We approximate the solution U(y, t) in V0:

U(y, t) ≈ Û(y, t) =
N∑

k=−M

Ûk(t)ϕ(y − k). (12)

Taking the spatial derivatives and time derivatives gives the following equations:

∂2Û

∂y2
=

N∑
k=−M

Ûk(t)ϕ
′′(y − k) (13)

∂Û

∂t
=

N∑
k=−M

Û ′
k(t)ϕ(y − k). (14)

Note that the equation (11) is equivalent to F (U) = 0 where F is the linear operator

∂/∂t−4ℓ(∂2/∂y2). For equation (11), the residual R(x, t) is defined as R(x, t) = Ût−4ℓÛyy.
Now fix k ∈ {−M,−M + 1, . . . , N}. Galerkin condition (6) gives∫ 2ℓ

0

(
N∑

j=−M

Û ′
j(t)ϕ(y − j)− 4ℓ

N∑
j=−M

Ûj(t)ϕ
′′(y − j)

)
ϕ(y − k) dy = 0,

where the integral runs from 0 to 2ℓ since the equation (11) was posed on (0, 2ℓ). Expanding
the equation and interchanging the integral and the sum, we obtain

N∑
j=−M

Û ′
j(t)

∫ 2ℓ

0

ϕ(y − j)ϕ(y − k) dy −
N∑

j=−M

Ûj(t) · 4ℓ
∫ 2ℓ

0

ϕ′′(y − j)ϕ(y − k) dy = 0.

Define

Tkj =

∫ 2ℓ

0

ϕ(y − j)ϕ(y − k) dy (15)

Skj = 4ℓ
∫ 2ℓ

0

ϕ′′(y − j)ϕ(y − k) dy. (16)

These integrals must be computed numerically. Galerkin’s condition becomes

N∑
j=−M

TkjÛ
′
j(t) =

N∑
j=−M

SkjÛj(t),

which is a first-order ODE on Û−M(t), Û−M+1(t), . . . , ÛN(t). We have M +N +1 equations
for each k ∈ {−M,−M + 1, . . . , N}, resulting in a system of first-order ODEST−M,−M · · · T−M,N

...
. . .

...
TN,−M · · · TN,N


Û ′

−M(t)
...

Û ′
N(t)

 =

S−M,−M · · · S−M,N
...

. . .
...

SN,−M · · · SN,N


Û−M(t)

...

ÛN(t)

 . (17)

8



This can be expressed succinctly as

T Û
′
= SÛ .

The initial condition is

Ûk(0) =

∫ 2ℓ

0

sin(2−ℓπy)ϕ(y − k) dy

for each k ∈ {−M,−M + 1, . . . , N}. The equation (17) is solvable and will give the coeffi-

cients Û−M(t), Û−M+1(t), . . . , ÛN(t), hence to approximation of the solution of equation (10)
by (12).

If instead of scaling the PDE, we approximate the solution in Vn for some n > 0 we obtain

û(x, t) =
N∑

k=−M

Ûk(t)ϕn,k(x).

The Galerkin condition requires that

N∑
j=−M

(
Û ′
j(t)

∫ 1

0

ϕn,j(x)ϕn,k(x)dx− Ûj(t)

∫ 1

0

ϕ′′
n,j(x)ϕn,k(x)dx

)
= 0.

Define matrices T̃ n and S̃n by

T̃ n
kj =

∫ 1

0

ϕn,j(x)ϕn,k(x)dx

S̃n
kj =

∫ 1

0

ϕ′′
n,j(x)ϕn,k(x)dx.

Then the Galerkin condition can be reduced to

T̃ nÛ
′
= S̃nÛ .

Once again, the integrals T̃ n
kj and S̃n

kj must be computed numerically.

3.2 Burgers’ equation

Consider the viscous Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (0, 1), t > 0 (18)

with the boundary conditions
u(0, t) = u(1, t) = 0

and initial condition
u(x, 0) = sin(πx).

9



If we make the change of variables y = 2ℓx, the problem becomes

∂U

∂t
+ 2ℓU

∂U

∂y
= 4ℓν

∂2u

∂y2
, y ∈ (0, 2ℓ), t > 0 (19)

with boundary and initial conditions

U(0, t) = u(2ℓ, t) = 0

U(y, 0) = sin(2−ℓπy).

where U(y, t) is the solution written in terms of the new variable y. The approximation of
the solution U(y, t) by the Wavelet-Galerkin method is given by

U(y, t) ≈ Û(y, t) =
N∑

k=−M

Ûk(t)ϕ(y − k). (20)

Then the derivatives Ût, Ûx, and Ûxx are

∂Û

∂t
=

N∑
k=−M

Û ′
k(t)ϕ(y − k) (21)

∂Û

∂y
=

N∑
k=−M

Ûk(t)ϕ
′(y − k) (22)

∂2Û

∂y2
=

N∑
k=−M

Ûk(t)ϕ
′′(y − k) (23)

and the nonlinear term Û · Ûy becomes

Û · Ûy =

(
N∑

k=−M

Ûk(t)ϕ(y − k)

)
·

(
N∑

k=−M

Ûk(t)ϕ
′(y − k)

)

For equation (18), the residual R(y, t) is defined as

R(y, t) =
N∑

k=−M

Û ′
k(t)ϕ(y − k) + 2ℓ

(
N∑

k=−M

Ûk(t)ϕ(y − k)

)
·

(
N∑

k=−M

Ûk(t)ϕ
′(y − k)

)

− 4ℓν
N∑

k=−M

Ûk(t)ϕ
′′(y − k).

The Galerkin condition states that∫ 2ℓ

0

R(y, t)ϕ(y − k)dy = 0

10



for each k ∈ {−M,−M +1, . . . , N}. To apply this condition we must compute the integrals

Tkj =

∫ 2ℓ

0

ϕ(y − j)ϕ(y − k) dy

Skj = 4ℓ
∫ 2ℓ

0

ϕ′′(y − j)ϕ(y − k) dy,

which are (15) and (16), and also the integral

Ωkij = 2ℓ
∫ 2ℓ

0

ϕ(y − i)ϕ′(y − j)ϕ(y − k)dy.

for each k. The numerical value of these Tkj, Skj, and Ωkij integrals will be used to find

the coefficients Û−M(t), Û−M+1(t), . . . , ÛN(t), and hence the approximation Û . Due to the

nonlinear term Û · Ûy, the resulting term of equations for Ûk(t) is nonlinear and generally
requires iterative numerical methods.

If we instead solve the problem with higher resolution wavelets, we obtain

u(x, t) =
N∑

k=−M

Ûk(t)ϕn,k(x)

and the Galerkin condition becomes

N∑
j=−M

Û ′
j(t)

∫ 1

0

ϕn,j(x)ϕn,k(x)dx+
N∑

j=−M

N∑
m=−M

Ûj(t)

∫ 1

0

ϕn,j(x)ϕ
′
n,m(x)ϕn,k(x)dx

− ν
N∑

j=−M

Ûj(t)

∫ 1

0

ϕ′′
n,j(x)ϕn,k(x)dx = 0.

This equation can be solved by iterative methods once the integrals are computed numeri-
cally.

4 Numerical implementations

We now attempt to solve the heat equation numerically using the wavelet-Galerkin method.
The exact process of solving numerically depends on the choice of multi-resolution analysis.
We shall use the Shannon and Daubechies MRAs.

In the Shannon MRA, the scaling function has the exact form

ϕ(x) = sinc(x) =
sin(πx)

πx
.

Since (11) is posed on the interval (0, 2ℓ) and ϕ(x) has a period of 2 in the Shannon MRA,
it is reasonable to set M = 0 and N = 2ℓ − 1 so that k ∈ {0, 1, 2, . . . , 2ℓ − 1}. The initial
conditions are given by the integral

Ûk(0) =

∫ 2ℓ

0

sin(2−ℓπy)
sin(π(y − k))

π(y − k)
dy.

11



The integrals Tkj and Skj in (15) and (16) become

Tkj =

∫ 2ℓ

0

sin(π(y − j)) sin(π(y − k))

π2(y − j)(y − k)
dy.

Skj = 4ℓ
∫ 2ℓ

0

(
2 (y − j)− π2 (y − j)3

)
sin (π (y − j))− 2π (y − j)2 cos (π (y − j))

π (y − j)4

× sin(π(y − k))

π(y − k)
dy.

For the Daubechies MRA, we once again set M = 0 and N = 2ℓ. The Daubechies scaling
function has no closed form, though it is possible to obtain arbitrarily accurate approxima-
tions of ϕ(Daub) by repeatedly iterating the defining equation (1) where the coefficients pk
depend on which scaling function is being constructed. For both the Db2 and Db6 wavelets,
we use the 6th iteration of the equation to obtain an approximation ϕ

(Daub)
6 of the scaling

function. The initial conditions and relevant integrals are then given by

Ûk(0) =

∫ 2ℓ

0

sin(2−ℓπy)ϕ
(Daub)
6 (y − k)dy

Tkj =

∫ 2ℓ

0

ϕ
(Daub)
6 (y − j)ϕ

(Daub)
6 (y − k)dy

Skj =

∫ 2ℓ

0

ϕ
(Daub)
6

′′(y − j)ϕ
(Daub)
6 (y − k)dy

All that is left to do is compute these integrals numerically and solve the resulting system
of ODEs. In MATLAB, we use the trapezoidal sum function with a mesh consisting 210

equally points to evaluate each of the integrals and use Runge-Kutta (4, 5) to solve the
system of ODEs. We solve the PDE up to time t = 0.25 with 10 time steps.

The figures below show the t = 0.25 profiles of the exact versus approximate solutions due
to Wavelet-Galerkin for each MRA and various values of ℓ. The dashed line represents the
approximate solution and the solid line the exact solution.

These solutions have exactly the expected behavior. Increasing the value of ℓ yields more
accurate solutions in all MRAs since more details are able to be captured by the scaling
functions in V0 the more the equation is expanded.

According to figure 1, the Shannon scaling function, due to its slow rate of decay, requires
large values of ℓ to accurately approximate the compactly supported solution. However,
the solutions obtained using the Shannon scaling function are smooth since ϕ(Sha) is highly
smooth.

12



Figure 1: Approximate solutions of the heat equation at t = 0.25 using the Shannon scaling
function.

Figure 2: Approximate solution at t = 0.25 using the Daubechies-2 (Db2) scaling function.

13



Figure 3: Approximate solutions at t = 0.25 using the Daubechies-6 (Db6) scaling function.

The solutions obtained using the Daubechies wavelets are very accurate even for small
values of ℓ due to the compact support of ϕ(Daub). However, they contain some spiky
artifacts due to the limited degree of smoothness of the ϕ(Daub). This is especially apparent
for the solution obtained using the Db2 scaling function which is not even once continuously
differentiable. Better solutions could be obtained by using Daubachies scaling functions with
a higher degree of smoothness (e.g. Db12) though this is more computationally expensive
as smoother Daubechies scaling functions also have larger support lengths.

14



References

[1] Grégoire Allaire. Two-scale convergence and homogenization of periodic structures. In
School on Homogenization, Trieste, Italy, September 1993. ICTP, Trieste. Lecture notes
presented at the ICTP School on Homogenization, September 6–17, 1993.

[2] Kevin Amaratunga and John R. Williams. Wavelet-galerkin solution of boundary value
problems. Archives of Computational Methods in Engineering, 1997.

[3] S. H. Behiry, J. R. Cannon, H. Hashish, and A. I. Zayed. Comparison of a wavelet-
galerkin procedure with a crank-nicolson-galerkin procedure for the diffusion equation
subject to the specification of mass. Journal of Computational and Applied Mathematics,
98(2):245–270, 1998.

[4] Albert Boggess and Francis J. Narcowich. A First Course in Wavelets with Fourier
Analysis. Wiley, Hoboken, NJ, 2nd edition, 2009.

[5] Ming-Quayer Chen, Chyi Hwang, and Yen-Ping Shih. The computation of wavelet-
galerkin approximation on a bounded interval. International Journal for Numerical
Methods in Engineering, 39(17):2921–2944, 1996.

[6] Simon Jones and Mathias Legrand. The wavelet-galerkin method for solving pde’s with
spatially dependent variables. In Proceedings of the 19th International Congress on
Sound and Vibration (ICSV19), Vilnius, Lithuania, 2012. HAL Id: hal-00719744.

[7] Pius Kirrmann, Guido Schneider, and Alexander Mielke. The validity of modulation
equations for extended systems with cubic nonlinearities. Proceedings of the Royal So-
ciety of Edinburgh Section A: Mathematics, 122(1-2):85–91, 1992.

[8] Stéphane G. Mallat. A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(7):674–693, 1989.

[9] Sam Qian and John Weiss. Wavelets and the numerical solution of partial differential
equations. Journal of Computational Physics, 106:155–175, 1993.

15


