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1
Basics

This is a quick review of complex numbers, and it is assumed that the reader know
the basics of complex numbers: arithmetic, polar form, etc.

1.1 The Complex Plane
Definition 1.1: Complex Number

A complex number z is a number of the form

z = a+ bi

where a and b are real numbers, and i =
√
−1.
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We wish to interpret these numbers geometrically. Recall that we plot real numbers
in a line. We can do a similar thing for complex numbers. Let x-axis be the real
axis, and y-axis be the imaginary axis. Then, for any complex number a+bi, there
is exactly one point corresponding, namely (a, b). The figure above shows −3+ 5i

at (−3, 5), 3 + 2i at (3, 2), and 1− 3i at (1,−3).

Recall that an absolute value of a real number x is the distance from 0 to x on the
real line. Similarly, an absolute value of z can be defined as the distance from 0

to z on the complex plane, which is
√
a2 + b2.

Definition 1.2: Modulus

A modulus of a complex number is

|z| =
√
a2 + b2.

The term modulus, magnitude, and norm are all equal, and may be used inter-
changeably.

The complex conjugate can also be thought of as the reflection of a complex number
about the real axis in the complex plane. The figure shows the points correspond-
ing to −3 + 5i, 3 + 2i, and their complex conjugates.

1.2 Complex-Variable Functions
Definition 1.3: Complex-Variable Functions

A function f : C → C with variable z ∈ C is called a complex-variable
function.

Example 1
If f(z) = z2, then f(1 + i) = (1 + i)2 = 2i, and f(1) = 12 = 1.
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2
Visualizing the Function

How do we draw these functions? For real functions f : R → R, we used one axis
(the x-axis) for the domain, and another axis (the y-axis) for the range. We could
not do such thing in complex functions! Since every complex number is written
as a+ bi where a and b are real numbers, you need two real numbers to visualize
one complex number. Thus you need two axes for the complex numbers in the
domain, and other two for the ones in the range, which sums to 4. So we could not
visualize complex functions as the way we did in real functions since we can only
visualize up to 3-dimensions. We thus treat the domain and the range separately.

If f : A → B where A and B are open subsets of C, by f , z = x+ iy is mapped to
w = u+ iv. We also write the function as w = f(z), as an analogue of y = f(x).

Because the domain and range is drawn separately, an alternative is to understand
complex functions by tracking how they transform curves and regions in the input
plane. In particular, we focus on how lines and rays (horizontal/vertical lines,
radial lines, circles) in the domain are mapped under the function. This gives an
idea of the behavior of the function, without requiring a full 4D picture.

3
Linear Mappings

From now on, we use either mappings or transformations for complex functions.
The three most basic complex mappings are:

• Translation: ω = f(z) = z + b where b ∈ C

• Rotation: ω = az, a = eiα
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• Dilation: ω = az, a > 0, a ̸= 1

If we have b = c + id, then ω = z + b translates the point c units to the right, d
units to the up (note that c and d may be negative, if c < 0, then z is moved −c

units left, and if d < 0, then z is moved −d units down).

The rotation ω = eiαz rotates z the amount of α with respect to the origin. Since
one rotation has angle 2π, the rotation ω = ei(2π)z is the identity rotation, which
makes sense since e2πi = 1.

Dilation changes the distance between z and the origin, and preserves the angle.

For the first three, we could simply write f(z) = az+ b where a, b ∈ C, which is a
combination of scaling and rotation, followed by a translation. So geometrically,

• |a| is the scaling factor,

• arg a is the rotation angle (counterclockwise),

• b is the translation vector.

Here, if a = x+ iy, then arg a is defined as

arg a =


tan−1

(
y
x

)
x > 0

tan−1
(
y
x

)
+ π x < 0

π
2 x = 0, y > 0

−π
2 x = 0, y < 0.

Such mappings are called linear mappings. Note that these mappings not linear
in the real-variable sense, and is different from linear transformations.

4
Inversion

Besides the first three basic mappings, there is one more basic mapping: the
inversion. The inversion is the mapping ω = 1/z = e−iθ/r. The inversion can be
interpreted as a reflection with respect to the unit circle and the real axis, since the
new norm became the reciprocal to the original, and the angle became negative.

By writing

ω =
1

x+ iy
=

x

x2 + y2
− i

y

x2 + y2
,

there is a bijection between x + iy and its inversion, (x, y) ↔ (u, v) where u =
x

x2 + y2
and v = − y

x2 + y2
.

Suppose a(x2 + y2) + bx+ cy+ d = 0 for z = (x, y). Then, this is a straight line if
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a = 0 and circle if a ̸= 0. Dividing both sides by x2 + y2,

a+
bx

x2 + y2
+

cy

x2 + y2
+

d

x2 + y2
= 0

Mapping this by ω = 1
z is just rewriting the relation with respect to (u, v).

a+ bu− cv + d(u2 + v2) = 0

This is a straight line it d = 0, and a circle if d ̸= 0. Then, there are four cases.

• If a, d ̸= 0, then the inversion maps a circle not passing the origin to another
(not necessarily distinct) circle not passing the origin.

• If a ̸= 0 and d = 0, then the inversion maps a circle passing the origin to a
straight line not passing the origin.

• If a = 0 and d ̸= 0, then the inversion maps a straight line not passing the
origin to a circle passing the origin.

• If a = d = 0, then the inversion maps a straight line passing the origin to
another (not necessarily distinct) straight line passing the origin.

This is summarized to the following theorem.

Theorem 4.1

The inversion ω = 1/z maps
{circles and straight lines} onto {circles and straight lines}.

5
Möbius Transformations

Consider the rational function f(z) =
az + b

cz + d
where a, b, c, and d ∈ C. This is

almost a bijective map from C to C, with two problems:

• How should we define f(−d/c)?

• For what z is f(z) = c/a?

We see that both problems involve infinity. If we assume that there is an ideal
point ∞ at infinity, we could define the extended complex plane C∞ = C ∪ {∞}.

Definition 5.1: Möbius Transformation

A Möbius transformation is a rational function f : C∞ → C∞ of the form

f(z) =
az + b

cz + d
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where ad− bc ̸= 0.

Then we have

f(z) =


az + b

cz + d
z ̸= −d

c
, ∞

∞ z = −d

ca

c
z = ∞

,

so Möbius transformations are bijections from C∞ to C∞.

Exercise 1
Why do we consider only ad− bc ̸= 0?

It could be deduced that all Möbius transformations are compositions of basic
mappings. If T (z) = az+b

cz+d , then T (z) = f3 ◦ f2 ◦ f1 where

f1 = z +
d

c
, f2 =

1

z
, f3 =

a

c
−
(
ad− bc

c2

)
z.

This gives the following theorem.

Theorem 5.1

The bilinear transformation maps
{circles and straight lines} onto {circles and straight lines}.

Example 2

Show that ℜ
(

z

1− z

)
> −1

2
if |z| < 1.

Solution We have
z

1− z
= f3 ◦ f2 ◦ f1 where f1 = 1− z, f2 =

1

z
, and f3 = z − 1.

The region of f1 maps |z| < 1 to |1− z| < 1, which is x2 + y2 − 2x < 0. With f2,
we have

1

x2 + y2
(x2 + y2 − 2x) < 0

1− 2x

x2 + y2
< 0

1− 2u < 0

u >
1

2
.

Finally, f3 gives u > −1

2
, so ℜ

(
z

1− z

)
> −1

2
.
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We look at the graph of Möbius transformations. As we said earlier, we are
particularly interested in how horizontal and vertical lines are mapped under the
function.

Figure 1: Mapping of f(z) = z−1
z+1

Consider the function f(z) =
z − 1

z + 1
. Under this function, the four red lines and

the seven blue lines (line 4 is the x-axis) is mapped to the diagram on the right.

Figure 2: Mapping of f(z) = z−1
z+1

The region inside is preserved, so the region between red 1 and 2 and blue 1 and
2 on the domain is also the region between red 1, 2 and blue 1, 2 on the range
(the black region on the domain is mapped to the black region on the range). If
we want the map of a smaller region, we can divide lines more precisely.
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6
Elementary Functions

6.1 Exponential Functions
Theorem 6.1: Euler’s Equation

If x is a real number, then eix = cosx+ i sinx.

Thus, for z = x+ iy, define

ez = ex · eiy = ex(cos y + i sin y).

Then, we have the following exponent identities, as usual.

1. ez1ez2 = ez1+z2 = ex1+x2 (cos(y1 + y2) + i sin(y1 + y2))

2. ez1/ez2 = ez1−z2

3. (ez)n = enz where n ∈ Z

4. ez ̸= 0 for ∀z ∈ C since |ez| = ex > 0.

Remark.
ez is not one-to-one, because ez+2πki = ez. ez is one-to-one mod 2πi.

Theorem 6.2

The exponential function f(z) = ez is 2πi-periodic, and is unique up to mod
2πi.

Example 3
If ez = a+ ib, then what is z?

Solution We let z = x+ iy, and ex+iy = a+ ib. Then,

a = ex cos y and b = ex sin y.

Solving for x and y, we get

x =
1

2
ln(a2 + b2) and

tan y =
b

a
, so

y =

{
tan−1

(
b
a

)
+ 2kπ a > 0

tan−1
(
b
a

)
+ (2k + 1)π a < 0

.

8



Complex-variable Functions Joshua Im (July 9, 2025)

Exercise 2
Find z where ez = 5− 5i.

Figure 3: Mapping of f(z) = ez

The mapping of the exponential function is drawn as follows. Since the exponential
function is periodic mod 2πi, we only consider −π ≤ y ≤ π. The horizontal lines
(y = k) are mapped to rays starting from the origin (this is because as x → −∞,
ex → 0), and the vertical lines (x = k) are mapped to circles (this is because the
modulus of ez is ex, which is fixed).

We now look on trigonometric functions. Since

sin y =
eiy − e−iy

2i
and cos y =

eiy + e−iy

2
,

We extend this relation to C and get

sin z =
eiz − e−iz

2i
and cos y =

eiz + e−iz

2
.

Some properties still hold in C.

• sin z is an odd function, i.e. sin(−z) = − sin z.

• cos z is an even function, i.e. cos(−z) = cos z.

• sin z = 0 ⇔ z = kπ (k ∈ Z)

• cos z = 0 ⇔ z = (k + 1
2 )π (k ∈ Z)

• sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2

• cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2

• cos2 z + sin2 z = 1
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We can also define other trigonometric functions:

tan z =
sin z

cos z

sec z =
1

cos z

csc z =
1

sin z

cot z =
1

tan z

cosh z =
ez + e−z

2

sinh z =
ez − e−z

2
.

Note that cosh z and sinh z are also 2πi-periodic. Most of the properties are true
also for complex variables, but sin z and cos z are not bounded anymore.

Exercise 3
Solve cos z = 2 over the complex numbers.

6.2 Logarithmic Functions
Notice that for given z ∈ C, eω = z does not have a unique solution, but it is
unique up to mod 2πi. Therefore, if ω0 satisfies eω0 = z, then

{ω | ω0 − ω = 2kπi, k ∈ Z}

is the set of all ω satisfying eω = z.

Definition 6.1: log z

The function log z is a multi-valued function (or a set-valued function).

log z = {ω | ω = ln |z|+ i(arg z + 2kπ), k ∈ Z}

To get the formula of log z, we set z = reiθ. Since eω = z, eueiv = reiθ, we have

eu = r and eiv = eiθ.

Therefore, u = ln r and v = θ + 2kπ for k ∈ Z.

Remark.
log 0 is not defined since the range of ez is C \ {0}.
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Remark.
For x ∈ R, ex → ∞ as x → ∞. However, this is not true for complex numbers.
Note that we can obtain arbitrarily large modulus by keep adding 2πi.

But we want log z to be one specific value, instead of a set of values. Thus we fix
k as 0 in the definition of log z, and we call this the principal logarithm.

Definition 6.2: Principlal Logarithm

The principal logarithm function is defined by

Log z = ln |z|+ i arg z

where arg z ∈ (−π, π].

6.3 Complex Exponents
Recall that z = reiθ = rei(θ+2kπ). Define zk as complex numbers satisfying znk = z.
Then,

zk = r1/nei(θ+2kπ)/n

for k = 0, . . . , n − 1, and they are all distinct. It is ambiguous to single out one
of them as z1/n.

Definition 6.3: z1/n

The function ω = z1/n = e(1/n)(ln |z|+i arg z) is a multi-valued function, which
has n distinct values.

Now, suppose α ∈ C \Q. We consier zα. We have

zα = eα log z

= eα(ln r+i(θ+2kπ))

= rαeiαθei·2kπα.

If we let α = a+ ib, then

zα = e(a+ib) log z

= ea ln r−b(θ+2kπ) · ei(b ln r+aθ+2kπa).

The value varies for each k, and hence there are infinite numbers that can be zα.
Therefore, we should think the output of exponential functions as not a number,
but a set of numbers.
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Example 4
We have the following complex exponents:

51/2 = e(1/2) log 5

= e(1/2)(ln 5+2kπi)

= {±
√
5}

ii = ei log i

= ei(ln 1+i(π/2+2kπ))

=
{
e−π/2+2kπ, k ∈ Z

}

Exercise 4
Find z such that z1−i = 4.

Figure 4: Mapping of f(z) = z2

The function f(z) = z2 squares horizontal and vertical rays to parabolas, as shown
in the figure above.
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