Distributions of Quadratic Residues

PROMYS Counselor Seminar

Joshua Im

August 5, 2025

Review

These notes are written that the readers are familiar with quadratic residues. Recall the following definitions and properties of quadratic residues.

Definition 1.1: Quadratic Residue

A quadratic residue modulo a prime p is a number $a \in \{1, \dots, p-1\}$ such that there exists $x \in \{1, \dots, p-1\}$ such that

$$x^2 \equiv a \pmod{p}.$$

If a is not a quadratic residue, we call them quadratic nonresidues. We abbreviate quadratic residues to QR, and quadratic nonresidues to QNR.

Theorem 1.1

- $QR \times QR = QR$.
- $QR \times QNR = QNR$.
- $QNR \times QNR = QR$.

Theorem 1.2

-1 is a QR mod p if and only if $p \equiv 1 \pmod{4}$.

Theorem 1.3

There are $\frac{p-1}{2}$ QRs mod p.

Definition 1.2: Legendre Symbol

Let p be a fixed prime. The Legendre symbol mod p is a function $\chi: \mathbb{Z} \to \{-1,0,1\}$, defined by

$$\chi'(n) = \left(\frac{n}{p}\right) = \begin{cases} 1 & n \text{ is QR mod } p \\ -1 & n \text{ is QNR mod } p \\ 0 & p \mid n \end{cases}.$$

The Legendre symbol is completely multiplicative. That is,

$$\left(\frac{mn}{p}\right) = \left(\frac{m}{p}\right) \left(\frac{n}{p}\right)$$

for all $m, n \in \mathbb{Z}$.

Motivation

Let p be a 1 mod 4 prime. If $a \in \{1, 2, \dots, p-1\}$ is a QR mod p, then $-a \equiv p-a \pmod p$ is also a QR mod p. Thus if $p \equiv 1 \pmod 4$, then the QRs are distributed symmetrically with respect to p/2.

The QRs mod p for p=13, 29, and 71 are displayed on the image above. QRs are plotted in blue dots, while the red dot is p/2. 13, 29, and 71 are all 1 mod 4 primes, and it is easy to see that the blue dots are distributed symmetrically with respect to the red dot.

For a fixed prime p, define E_p to be the number of QRs on (0, p/2) minus the number of QRs on (p/2, p). Then $E_p = 0$ if $p \equiv 1 \pmod{4}$.

What if $p \equiv 3 \pmod{4}$? Since there are $\frac{p-1}{2}$ QRs mod p, if we let p = 4k + 3, there are 2k + 1 QRs mod p, which is odd. Thus there cannot be the same amount of QRs in intervals (0, p/2) and (p/2, p) the number of QRs in each interval should have different parity.

We do some numericals.

We see the distribution of QRs when p = 11, 31, and 71, which are all 3 mod 4 primes. The blue dots are QRs, and the red dot is p/2. By intuition, it seems like there are more QRs on the interval (0, p/2) than on the interval (p/2, p). Is this a coincidence?

The Theorem

Theorem 3.1: Quadratic Excess Theorem

Let p be a 3 mod 4 prime. Then more quadratic residues mod p lie on the interval (0, p/2) than in the interval (p/2, p).

So $E_p > 0$ if $p \equiv 3 \pmod{4}$.

To prove the theorem, we need some lemmas.

 \Box

Lemma: Weighed Gauss Sum

If
$$p \equiv 3 \pmod{4}$$
 is a prime, then $\sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \exp\left(\frac{2\pi i k n}{p}\right) = \left(\frac{n}{p}\right) i \sqrt{p}$.

Proof. The proof is omitted.

There is one more lemma that we need, which we will introduce in the next section.

Dirichlet L-functions

Definition 4.1: Dirichlet Character

Let $m \in \mathbb{Z}^+$. A **Dirichlet character** modulo m is a function $\chi : \mathbb{Z} \to \mathbb{C}$ such that

- $\chi(a+m) = \chi(a)$ for all $a \in \mathbb{Z}$
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$ (so χ is completely multiplicative)
- $\chi(1) = 1$
- $\chi(a) = 0 \text{ if } \gcd(a, m) \neq 1.$

There are several Dirichlet characters modulo a given positive integer m.

Definition 4.2: Dirichlet L-function

Let χ be a Dirichlet character mod m. The **Dirichlet L-functions** are defined as

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$

The sum runs over all positive integers. We state one lemma that is used for the proof of the theorem.

Lemma: Dirichlet

Suppose χ is a Dirichlet character mod m that only takes real values. Then $L(1,\chi) \in \mathbb{R}$ and $L(1,\chi) > 0$.

Proof. The proof is omitted.

5

The Proof

This section proves the quadratic excess theorem.

Let $G_p(n)$ be the weighted Gauss sum above, so

$$G_p(n) = \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \exp\left(\frac{2\pi i k n}{p}\right).$$

Then

$$G_p(n) = \left(\frac{n}{p}\right)i\sqrt{p}$$
 and $G_p(1) = \left(\frac{1}{p}\right)i\sqrt{p} = i\sqrt{p}$

since $1 = 1^2$ is always a QR. Thus we have $\left(\frac{n}{p}\right) = \frac{G_p(n)}{G_p(1)} = \frac{G_p(n)}{i\sqrt{p}}$.

Let p be a 3 mod 4 prime. Note that the Legendre symbol $\chi'(n) = \left(\frac{n}{p}\right)$ is also a Dirichlet character. Then the L-function for the Legendre symbol is

$$L(s,\chi') = \sum_{n=1}^{\infty} \frac{\chi'(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\left(\frac{n}{p}\right)}{n^s}.$$

Lemma

Let χ be a Dirichlet character. Then we have

$$\sum_{n \text{ odd}} \frac{\chi(n)}{n^s} = \left(1 - \frac{\chi(2)}{2^s}\right) \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$

Proof. We have

$$\left(1 - \frac{\chi(2)}{2^s}\right) \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} - \sum_{n=1}^{\infty} \frac{\chi(2)\chi(n)}{2^s \cdot n^s}$$

$$= \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} - \sum_{n=1}^{\infty} \frac{\chi(2n)}{(2n)^s}$$

$$= \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} - \sum_{n \text{ even}} \frac{\chi(n)}{n^s}$$

$$= \sum_{n \text{ odd}} \frac{\chi(n)}{n^s}.$$

So
$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n^s} = \left(1 - \frac{\left(\frac{2}{p}\right)}{2^s}\right) \sum_{n=1}^{\infty} \frac{\left(\frac{n}{p}\right)}{n^s}$$
. If we let $s = 1$, then

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} = \left(1 - \frac{\left(\frac{2}{p}\right)}{2}\right) \sum_{n=1}^{\infty} \frac{\left(\frac{n}{p}\right)}{n}.$$

Since $\left(\frac{2}{p}\right)$ is either -1 or 1, $1-\frac{\left(\frac{2}{p}\right)}{2}>0$. By Dirichlet, the Legendre symbol is a real Dirichlet character, so $L(s,\chi')>0$. This gives

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} > 0.$$

Now recall that $\left(\frac{n}{p}\right) = \frac{G_p(n)}{i\sqrt{p}} = \frac{1}{i\sqrt{p}} \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \exp\left(\frac{2\pi i k n}{p}\right)$. We then have

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} = \frac{1}{i\sqrt{p}} \sum_{n \text{ odd}} \frac{1}{n} \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \exp\left(\frac{2\pi i k n}{p}\right)$$
$$= \frac{1}{i\sqrt{p}} \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \sum_{n \text{ odd}} \frac{1}{n} \exp\left(\frac{2\pi i k n}{p}\right).$$

For convenience, let $\omega = \exp\left(\frac{2\pi i}{p}\right)$ be the pth root of unity. Then the expression above is equal to $\frac{1}{i\sqrt{p}}\sum_{k=1}^{p-1} \left(\frac{k}{p}\right)\sum_{n \text{ odd}} \frac{1}{n}\omega^{kn}$.

We use the Taylor series formula of $\tanh^{-1} z$. Since

$$\tanh^{-1} z = z + \frac{z^3}{3} + \frac{z^5}{5} + \dots = \sum_{n \text{ odd }} \frac{z^n}{n},$$

we get

$$\sum_{n \text{ odd}} \frac{1}{n} \exp\left(\frac{2\pi i k n}{p}\right) = \tanh^{-1}(\omega^k).$$

We now evaluate this manually.

Lemma

If $\omega = \exp\left(\frac{2\pi i}{p}\right)$ is the pth root of unity, then

$$\tanh^{-1}(\omega^{k}) = \begin{cases} \frac{\pi i}{4} + c_{k} & k \in (0, p/2) \\ -\frac{\pi i}{4} + c_{k} & k \in (p/2, p) \end{cases}$$

where $c_k \in \mathbb{R}$. Furthermore, $c_k = c_{p-k}$ for all $k \in \{1, 2, \dots, p-1\}$.

Proof. We use the identity

$$\tanh^{-1} z = \frac{1}{2} \operatorname{Log} \left(\frac{1+z}{1-z} \right)$$

where $\operatorname{Log} z = \ln |z| + i \operatorname{arg} z$ is the principal complex logarithm. The identity gives

$$\tanh^{-1}(\omega^k) = \frac{1}{2} \operatorname{Log}\left(\frac{1+\omega^k}{1-\omega^k}\right)$$

$$= \frac{1}{2} \operatorname{Log}\left(\frac{\omega^{-k/2} + \omega^{k/2}}{\omega^{-k/2} - \omega^{k/2}}\right)$$

$$= \frac{1}{2} \operatorname{Log}\left(\frac{\exp(-\pi i k/p) + \exp(\pi i k/p)}{\exp(-\pi i k/p) - \exp(\pi i k/p)}\right)$$

$$= \frac{1}{2} \operatorname{Log}\left(-i \cot\left(-\frac{\pi k}{p}\right)\right)$$

$$= \frac{1}{2} \left(\ln\left|\cot\left(-\frac{\pi k}{p}\right)\right| + i \arg\left(-i \cot\left(-\frac{\pi k}{p}\right)\right)\right).$$

If $k \in (0, p/2)$, then $-\frac{\pi k}{p} \in (-\pi/2, 0)$, so $\cot\left(-\frac{\pi k}{p}\right) < 0$. Thus $-i\cot\left(-\frac{\pi k}{p}\right)$ is pure imaginary and its imaginary part is positive, so $\arg\left(-i\cot\left(-\frac{\pi k}{p}\right)\right) = \frac{\pi}{2}$. If $k \in (p/2, p)$, then $-\frac{\pi k}{p} \in (-\pi/2, -\pi)$, so $\cot\left(-\frac{\pi k}{p}\right) > 0$. Thus $-i\cot\left(-\frac{\pi k}{p}\right)$ is pure imaginary and its imaginary part is negative, so $\arg\left(-i\cot\left(-\frac{\pi k}{p}\right)\right) = -\frac{\pi}{2}$. Letting $\frac{1}{2}\ln\left|\cot\left(-\frac{\pi k}{p}\right)\right| = c_k$ gives

$$\tanh^{-1}(\omega^k) = \begin{cases} \frac{\pi i}{4} + c_k & k \in (0, p/2) \\ -\frac{\pi i}{4} + c_k & k \in (p/2, p). \end{cases}$$

Now, we have

$$c_{p-k} = \frac{1}{2} \ln \left| \cot \left(-\frac{\pi(p-k)}{p} \right) \right|$$

$$= \frac{1}{2} \ln \left| \cot \left(-\pi + \frac{\pi k}{p} \right) \right|$$

$$= \frac{1}{2} \ln \left| -\cot \left(-\frac{\pi k}{p} \right) \right|$$

$$= \frac{1}{2} \ln \left| \cot \left(-\frac{\pi k}{p} \right) \right|$$

$$= c_k,$$

using the identity $\cot(\pi - z) = -\cot z$.

With the lemma, we have

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} = \frac{1}{i\sqrt{p}} \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \tanh^{-1}(\omega^k)$$

$$= \frac{1}{i\sqrt{p}} \left(\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) \left(\frac{\pi i}{4} + c_k\right) + \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) \left(-\frac{\pi i}{4} + c_k\right)\right)$$

$$= \frac{\pi i}{i\sqrt{p}} \left(\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) - \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right)\right)$$

$$+ \frac{1}{i\sqrt{p}} \left(\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) c_k + \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) c_k\right).$$

But

$$\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) c_k + \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) c_k = \sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) c_k + \sum_{k \in (0, p/2)} \left(\frac{p - k}{p}\right) c_k$$

$$= \sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) c_k - \sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) c_k$$

$$= 0,$$

so the second expression is zero. Therefore

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} = \frac{\pi i}{i\sqrt{p}} \left(\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) - \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) \right)$$
$$= \frac{\pi}{\sqrt{p}} \left(\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) - \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) \right),$$

which is real. Since we know that $\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} > 0$, we should have

$$\sum_{k\in(0,p/2)}\left(\frac{k}{p}\right)-\sum_{k\in(p/2,p)}\left(\frac{k}{p}\right)>0.$$

Since there are $\frac{p-1}{2}$ QRs mod p, there also should be $(p-1)-\frac{p-1}{2}=\frac{p-1}{2}$ QNRs mod p, i.e. for any prime p, the number QRs and QNRs are equal. Thus

$$\sum_{k=1}^{p-1} \left(\frac{k}{p} \right) = \sum_{k \in (0, p/2)} \left(\frac{k}{p} \right) + \sum_{k \in (p/2, p)} \left(\frac{k}{p} \right) = 0.$$

This gives $\sum_{k \in (0,p/2)} \left(\frac{k}{p}\right) > 0$, which suggests that there are more QRs than QNRs

on the interval (0, p/2). There are $\frac{p-1}{2}$ numbers on the interval (0, p/2), so there are more than $\frac{p-1}{4}$ QRs lying on (0, p/2), and there should be less than $\frac{p-1}{4}$ QRs lying on (p/2, p). Therefore, there are more QRs lying on (0, p/2) than (p/2, p), as desired.