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Review

These notes are written that the readers are familiar with quadratic residues.
Recall the following definitions and properties of quadratic residues.

Definition 1.1: Quadratic Residue

A quadratic residue modulo a prime p is a number a € {1,...,p—1} such
that there exists « € {1,...,p — 1} such that

r*=a (mod p).

If a is not a quadratic residue, we call them quadratic nonresidues. We abbreviate
quadratic residues to QR, and quadratic nonresidues to QNR.

— Theorem 1.1
e QR x QR = QR.
e QR x QNR = QNR.
e QNR x QNR = QR.

~— Theorem 1.2

—1is a QR mod p if and only if p =1 (mod 4).

~— Theorem 1.3

There are 1%1 QRs mod p.
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Definition 1.2: Legendre Symbol

Let p be a fixed prime. The Legendre symbol mod p is a function x : Z —
{-1,0,1}, defined by

1 n is QR mod p
X'(n) = (n) =< -1 mnis QNR mod p .
0 pln
The Legendre symbol is completely multiplicative. That is,
(5)-G)G)
p p p
for all m, n € Z.

Motivation

2

Let p be a 1 mod 4 prime. If a € {1,2,...,p—1} is a QR mod p, then —a=p—a
(mod p) is also a QR mod p. Thus if p =1 (mod 4), then the QRs are distributed
symmetrically with respect to p/2.

Quadratic Residues Modulo 13

0 1 2 3 4 5 6 7 8 9 10 11 12

Quadratic Residues Modulo 29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Quadratic Residues Modulo 73

The QRs mod p for p = 13, 29, and 71 are displayed on the image above. QRs
are plotted in blue dots, while the red dot is p/2. 13, 29, and 71 are all 1 mod 4
primes, and it is easy to see that the blue dots are distributed symmetrically with
respect to the red dot.
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For a fixed prime p, define E, to be the number of QRs on (0,p/2) minus the
number of QRs on (p/2,p). Then E, =0if p=1 (mod 4).

What if p = 3 (mod 4)? Since there are % QRs mod p, if we let p = 4k + 3,
there are 2k 4+ 1 QRs mod p, which is odd. Thus there cannot be the same amount
of QRs in intervals (0,p/2) and (p/2,p) the number of QRs in each interval should

have different parity.

We do some numericals.

Quadratic Residues Modulo 11

Quadratic Residues Modulo 31

0 5 10 15 20 25 30

Quadratic Residues Modulo 71

We see the distribution of QRs when p = 11, 31, and 71, which are all 3 mod 4
primes. The blue dots are QRs, and the red dot is p/2. By intuition, it seems like
there are more QRs on the interval (0,p/2) than on the interval (p/2,p). Is this a
coincidence?

The Theorem

Theorem 3.1: Quadratic Excess Theorem

Let p be a 3 mod 4 prime. Then more quadratic residues mod p lie on the
interval (0,p/2) than in the interval (p/2,p).

So E, > 0if p=3 (mod 4).

To prove the theorem, we need some lemmas.
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Lemma : Weighed Gauss Sum

p—1 .
If p=3 (mod 4) is a prime, then Z <k> exp (2mkn> = (n) /D
p

k=1

Proof. The proof is omitted. O

There is one more lemma that we need, which we will introduce in the next section.

Dirichlet L-functions

Definition 4.1: Dirichlet Character

Let m € Z*. A Dirichlet character modulo m is a function y : Z — C
such that

e xX(a+m)=x(a) forallacZ

o x(ab) = x(a)x(b) for all a, b € Z (so x is completely multiplicative)
e x(1)=1

e x(a) =0 if ged(a, m) # 1.

There are several Dirichlet characters modulo a given positive integer m.

Definition 4.2: Dirichlet L-function

Let x be a Dirichlet character mod m. The Dirichlet L-functions are
defined as

n

n=1

The sum runs over all positive integers. We state one lemma that is used for the
proof of the theorem.

Lemma : Dirichlet

Suppose x is a Dirichlet character mod m that only takes real values. Then
L(1,x) € R and L(1,x) > 0.

Proof. The proof is omitted. O
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The Proof

5

This section proves the quadratic excess theorem.

Let Gp(n) be the weighted Gauss sum above, so

=54 (3)on(57)

k=1

Then
G,,(n)z(Z)i\/ﬁ and Gp(l):<;>i\/§:i\/]3

since 1 = 12 is always a QR. Thus we have <n) = Gp(n) = M
p Gp(l) i/p

n

Let p be a 3 mod 4 prime. Note that the Legendre symbol x/(n) = (;) is also a

Dirichlet character. Then the L-function for the Legendre symbol is

8

n ns

L(s,Y) = i X/(:l) _ Z (Z) )

Lemma

Let x be a Dirichlet character. Then we have

x(m) (1 x(2)\ o x(n)
Proof. We have
CX@\ X)) _xm) - x(@)x(n)
(-9 S = >
v x(m) o= x(2n)
_nz::l ns 772::1 (2n)®
X)) x(n)
712::1 ns n%{%n ns
_ x(n) ¥
n odd n®

o1



Distributions of Quadratic Residues Joshua Im (August 5, 2025)

)

n?

. If we let s =1, then

soz(p) %) $

n
n odd n=1

2
Since (%) is either —1 or 1, 1 — % > (0. By Dirichlet, the Legendre symbol is a
real Dirichlet character, so L(s,x’) > 0. This gives

p—1 ;
Qp(”) _ L Z (k> exp (27”]6”), We then have
/P 1\/D p p

(%) 1 1”‘1(k> <2m'kn)
YA S I (e

n v pnoddnkzl p p
1

1 = (k) 1 <2ﬂ'ik‘n)
= — - ~ exp }
WP \P qa p

n o

Z,

Q

E

=

@

a

=

—_—

o+

=

o

o+
7N
N~~~

Il

273
For convenience, let w = exp ( ) be the pth root of unity. Then the expression
p

above is equal to 1 S i 1wk"
Vi — g - E - .
4 /D n

k=1 p n odd
We use the Taylor series formula of tanh™* z. Since

23 25
tanh ™'z =24 = + = =
an zz—|—3+ + - Zn
n odd

we get

1 2mi
Z nexp( mkn) = tanh ™' (w").

n odd p

We now evaluate this manually.
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Lemma

o
If w=-exp <m> is the pth root of unity, then
p

™
— + ke (0,p/2)
tanh ! (W) = { 4

Iy

where ¢, € R. Furthermore, ¢, = ¢, for all k € {1,2,...,p — 1}.

Proof. We use the identity

_ 1 14+ 2
tanh ™'z = = L
an z 2 0g<1z>

where Log z = In |z|+1i arg z is the principal complex logarithm. The identity gives

_ 1 1+wk
oo ky_
tanh (w)—2Log(1_wk)

1 wfk/2 +wk/2
B Log (w—k/Q _ wk/Z)

1 exp(—mik/p) + exp(mik/p)
Log (exp(—m’k/p) - exp(ﬂik/p))

)
(o () ()

If k € (0,p/2), then f%’“ € (—n/2,0), so cot (7%@) < 0. Thus —icot (f”k) is

pure imaginary and its imaginary part is positive, so arg (—i cot (—Lk)) =3 If
k € (p/2,p), then —”Tf“ € (—m/2,—m), so cot (—%) > 0. Thus —icot (—%) is
. . . . . . . . wk _ T
pure imaginary and its imaginary part is negative, so arg (—z cot (—?)) =—-3.
Letting %ln ‘cot (—’%)‘ = ¢}, gives
T
— +ck ke (0,p/2)
tanh ™ (wF) = { 4 . ’

e
—g T k€ (p/2,p).
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Now, we have

1 -
G-k =3 In |cot (_71'(pk))‘

1 ( 771{:)‘
= —In|cot | —m + —

2 P

1 ( wk)‘
=—-In|—cot | ——

2 D

gl (-57)
= —In|cot [ ——

2 P

:Ck,

using the identity cot(m — z) = — cot z. O

With the lemma, we have

5B SE G

n odd é pk:l
: G)(Gre)r = (5)(T+e)
= — = ta)+ > (=) (-5 +e
1 1
VP ke(p/2) NP ke(pr2p) P
_ T (’”v>_ 3 (’f>
WP \iclomsz NP/ welprem NP
1 k k
+ — Z <> ck + Z <) CL
WP\ ielomy \P ke(pr2p) P
But
k k k —k
S (e 2 (G)e= 2 (G)er T (55)e
ke(0.0/2) ke(2p) P ke(op/2) NP ke(op/2) N P
k k
50z, 0
ke(0p/2) P ke(p/2) N
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so the second expression is zero. Therefore

sWoais @ s

ke(0,p/2) ke(p/2,p

52,62 6)

ke(0,p/2) ke(p/2,p)

n
which is real. Since we know that E ——~ > 0, we should have
n

n odd

>, 6z G

ke(0,p/2) ke(p/2,p)

Since there are ”2;1 QRs mod p, there also should be (p — 1) — p—;l = % QNRs

mod p, i.e. for any prime p, the number QRs and QNRs are equal. Thus

2,05, ()

k=1 ke(0,p/2) ke(p/2,p)

k
This gives Z () > 0, which suggests that there are more QRs than QNRs

ke(Op/2) P
p

on the interval (0,p/2). There are %1 numbers on the interval (0, p/2), so there

are more than pll QRs lying on (0,p/2), and there should be less than % QRs

lying on (p/2,p). Therefore, there are more QRs lying on (0,p/2) than (p/2,p),
as desired. O




