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1
Review

These notes are written that the readers are familiar with quadratic residues.
Recall the following definitions and properties of quadratic residues.

Definition 1.1: Quadratic Residue

A quadratic residue modulo a prime p is a number a ∈ {1, . . . , p− 1} such
that there exists x ∈ {1, . . . , p− 1} such that

x2 ≡ a (mod p).

If a is not a quadratic residue, we call them quadratic nonresidues. We abbreviate
quadratic residues to QR, and quadratic nonresidues to QNR.

Theorem 1.1

• QR × QR = QR.

• QR × QNR = QNR.

• QNR × QNR = QR.

Theorem 1.2

−1 is a QR mod p if and only if p ≡ 1 (mod 4).

Theorem 1.3

There are p−1
2 QRs mod p.
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Definition 1.2: Legendre Symbol

Let p be a fixed prime. The Legendre symbol mod p is a function χ : Z →
{−1, 0, 1}, defined by

χ′(n) =

(
n

p

)
=


1 n is QR mod p

−1 n is QNR mod p

0 p | n
.

The Legendre symbol is completely multiplicative. That is,(
mn

p

)
=

(
m

p

)(
n

p

)
for all m, n ∈ Z.

2
Motivation

Let p be a 1 mod 4 prime. If a ∈ {1, 2, . . . , p− 1} is a QR mod p, then −a ≡ p− a

(mod p) is also a QR mod p. Thus if p ≡ 1 (mod 4), then the QRs are distributed
symmetrically with respect to p/2.

The QRs mod p for p = 13, 29, and 71 are displayed on the image above. QRs
are plotted in blue dots, while the red dot is p/2. 13, 29, and 71 are all 1 mod 4

primes, and it is easy to see that the blue dots are distributed symmetrically with
respect to the red dot.
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For a fixed prime p, define Ep to be the number of QRs on (0, p/2) minus the
number of QRs on (p/2, p). Then Ep = 0 if p ≡ 1 (mod 4).

What if p ≡ 3 (mod 4)? Since there are p−1
2 QRs mod p, if we let p = 4k + 3,

there are 2k+1 QRs mod p, which is odd. Thus there cannot be the same amount
of QRs in intervals (0, p/2) and (p/2, p) the number of QRs in each interval should
have different parity.

We do some numericals.

We see the distribution of QRs when p = 11, 31, and 71, which are all 3 mod 4

primes. The blue dots are QRs, and the red dot is p/2. By intuition, it seems like
there are more QRs on the interval (0, p/2) than on the interval (p/2, p). Is this a
coincidence?

3
The Theorem

Theorem 3.1: Quadratic Excess Theorem

Let p be a 3 mod 4 prime. Then more quadratic residues mod p lie on the
interval (0, p/2) than in the interval (p/2, p).

So Ep > 0 if p ≡ 3 (mod 4).

To prove the theorem, we need some lemmas.
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Lemma : Weighed Gauss Sum

If p ≡ 3 (mod 4) is a prime, then
p−1∑
k=1

(
k

p

)
exp

(
2πikn

p

)
=

(
n

p

)
i
√
p.

Proof. The proof is omitted.

There is one more lemma that we need, which we will introduce in the next section.

4
Dirichlet L-functions

Definition 4.1: Dirichlet Character

Let m ∈ Z+. A Dirichlet character modulo m is a function χ : Z → C
such that

• χ(a+m) = χ(a) for all a ∈ Z

• χ(ab) = χ(a)χ(b) for all a, b ∈ Z (so χ is completely multiplicative)

• χ(1) = 1

• χ(a) = 0 if gcd(a,m) ̸= 1.

There are several Dirichlet characters modulo a given positive integer m.

Definition 4.2: Dirichlet L-function

Let χ be a Dirichlet character mod m. The Dirichlet L-functions are
defined as

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

The sum runs over all positive integers. We state one lemma that is used for the
proof of the theorem.

Lemma : Dirichlet

Suppose χ is a Dirichlet character mod m that only takes real values. Then
L(1, χ) ∈ R and L(1, χ) > 0.

Proof. The proof is omitted.
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5
The Proof

This section proves the quadratic excess theorem.

Let Gp(n) be the weighted Gauss sum above, so

Gp(n) =

p−1∑
k=1

(
k

p

)
exp

(
2πikn

p

)
.

Then
Gp(n) =

(
n

p

)
i
√
p and Gp(1) =

(
1

p

)
i
√
p = i

√
p

since 1 = 12 is always a QR. Thus we have
(
n

p

)
=

Gp(n)

Gp(1)
=

Gp(n)

i
√
p

.

Let p be a 3 mod 4 prime. Note that the Legendre symbol χ′(n) =
(

n
p

)
is also a

Dirichlet character. Then the L-function for the Legendre symbol is

L(s, χ′) =

∞∑
n=1

χ′(n)

ns
=

∞∑
n=1

(
n

p

)
ns

.

Lemma

Let χ be a Dirichlet character. Then we have

∑
n odd

χ(n)

ns
=

(
1− χ(2)

2s

) ∞∑
n=1

χ(n)

ns
.

Proof. We have(
1− χ(2)

2s

) ∞∑
n=1

χ(n)

ns
=

∞∑
n=1

χ(n)

ns
−

∞∑
n=1

χ(2)χ(n)

2s · ns

=

∞∑
n=1

χ(n)

ns
−

∞∑
n=1

χ(2n)

(2n)s

=

∞∑
n=1

χ(n)

ns
−

∑
n even

χ(n)

ns

=
∑
n odd

χ(n)

ns
.
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So
∑
n odd

(
n

p

)
ns

=

1−

(
2
p

)
2s

 ∞∑
n=1

(
n

p

)
ns

. If we let s = 1, then

∑
n odd

(
n

p

)
n

=

1−

(
2
p

)
2

 ∞∑
n=1

(
n

p

)
n

.

Since
(

2
p

)
is either −1 or 1, 1− ( 2

p )
2 > 0. By Dirichlet, the Legendre symbol is a

real Dirichlet character, so L(s, χ′) > 0. This gives

∑
n odd

(
n

p

)
n

> 0.

Now recall that
(
n

p

)
=

Gp(n)

i
√
p

=
1

i
√
p

p−1∑
k=1

(
k

p

)
exp

(
2πikn

p

)
. We then have

∑
n odd

(
n
p

)
n

=
1

i
√
p

∑
n odd

1

n

p−1∑
k=1

(
k

p

)
exp

(
2πikn

p

)

=
1

i
√
p

p−1∑
k=1

(
k

p

) ∑
n odd

1

n
exp

(
2πikn

p

)
.

For convenience, let ω = exp

(
2πi

p

)
be the pth root of unity. Then the expression

above is equal to
1

i
√
p

p−1∑
k=1

(
k

p

) ∑
n odd

1

n
ωkn.

We use the Taylor series formula of tanh−1 z. Since

tanh−1 z = z +
z3

3
+

z5

5
+ · · · =

∑
n odd

zn

n
,

we get ∑
n odd

1

n
exp

(
2πikn

p

)
= tanh−1(ωk).

We now evaluate this manually.
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Lemma

If ω = exp

(
2πi

p

)
is the pth root of unity, then

tanh−1(ωk) =


πi

4
+ ck k ∈ (0, p/2)

−πi

4
+ ck k ∈ (p/2, p)

where ck ∈ R. Furthermore, ck = cp−k for all k ∈ {1, 2, . . . , p− 1}.

Proof. We use the identity

tanh−1 z =
1

2
Log

(
1 + z

1− z

)
where Log z = ln |z|+i arg z is the principal complex logarithm. The identity gives

tanh−1(ωk) =
1

2
Log

(
1 + ωk

1− ωk

)

=
1

2
Log

(
ω−k/2 + ωk/2

ω−k/2 − ωk/2

)

=
1

2
Log

(
exp(−πik/p) + exp(πik/p)

exp(−πik/p)− exp(πik/p)

)

=
1

2
Log

(
−i cot

(
−πk

p

))

=
1

2

(
ln

∣∣∣∣cot(−πk

p

)∣∣∣∣+ i arg

(
−i cot

(
−πk

p

)))
.

If k ∈ (0, p/2), then −πk
p ∈ (−π/2, 0), so cot

(
−πk

p

)
< 0. Thus −i cot

(
−πk

p

)
is

pure imaginary and its imaginary part is positive, so arg
(
−i cot

(
−πk

p

))
= π

2 . If

k ∈ (p/2, p), then −πk
p ∈ (−π/2,−π), so cot

(
−πk

p

)
> 0. Thus −i cot

(
−πk

p

)
is

pure imaginary and its imaginary part is negative, so arg
(
−i cot

(
−πk

p

))
= −π

2 .

Letting 1
2 ln

∣∣∣cot(−πk
p

)∣∣∣ = ck gives

tanh−1(ωk) =


πi

4
+ ck k ∈ (0, p/2)

−πi

4
+ ck k ∈ (p/2, p).
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Now, we have

cp−k =
1

2
ln

∣∣∣∣cot(−π(p− k)

p

)∣∣∣∣
=

1

2
ln

∣∣∣∣cot(−π +
πk

p

)∣∣∣∣
=

1

2
ln

∣∣∣∣− cot

(
−πk

p

)∣∣∣∣
=

1

2
ln

∣∣∣∣cot(−πk

p

)∣∣∣∣
= ck,

using the identity cot(π − z) = − cot z.

With the lemma, we have

∑
n odd

(
n

p

)
n

=
1

i
√
p

p−1∑
k=1

(
k

p

)
tanh−1(ωk)

=
1

i
√
p

 ∑
k∈(0,p/2)

(
k

p

)(
πi

4
+ ck

)
+

∑
k∈(p/2,p)

(
k

p

)(
−πi

4
+ ck

)

=
πi

i
√
p

 ∑
k∈(0,p/2)

(
k

p

)
−

∑
k∈(p/2,p)

(
k

p

)

+
1

i
√
p

 ∑
k∈(0,p/2)

(
k

p

)
ck +

∑
k∈(p/2,p)

(
k

p

)
ck

 .

But ∑
k∈(0,p/2)

(
k

p

)
ck +

∑
k∈(p/2,p)

(
k

p

)
ck =

∑
k∈(0,p/2)

(
k

p

)
ck +

∑
k∈(0,p/2)

(
p− k

p

)
ck

=
∑

k∈(0,p/2)

(
k

p

)
ck −

∑
k∈(0,p/2)

(
k

p

)
ck

= 0,
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so the second expression is zero. Therefore

∑
n odd

(
n

p

)
n

=
πi

i
√
p

 ∑
k∈(0,p/2)

(
k

p

)
−

∑
k∈(p/2,p)

(
k

p

)

=
π
√
p

 ∑
k∈(0,p/2)

(
k

p

)
−

∑
k∈(p/2,p)

(
k

p

) ,

which is real. Since we know that
∑
n odd

(
n

p

)
n

> 0, we should have

∑
k∈(0,p/2)

(
k

p

)
−

∑
k∈(p/2,p)

(
k

p

)
> 0.

Since there are p−1
2 QRs mod p, there also should be (p− 1)− p−1

2 = p−1
2 QNRs

mod p, i.e. for any prime p, the number QRs and QNRs are equal. Thus

p−1∑
k=1

(
k

p

)
=

∑
k∈(0,p/2)

(
k

p

)
+

∑
k∈(p/2,p)

(
k

p

)
= 0.

This gives
∑

k∈(0,p/2)

(
k

p

)
> 0, which suggests that there are more QRs than QNRs

on the interval (0, p/2). There are p−1
2 numbers on the interval (0, p/2), so there

are more than p−1
4 QRs lying on (0, p/2), and there should be less than p−1

4 QRs
lying on (p/2, p). Therefore, there are more QRs lying on (0, p/2) than (p/2, p),
as desired.
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