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1 Motivation

Consider the following innocent equation. We want to find a, b, c ∈ Z+ satisfying

a

b+ c
+

b

c+ a
+

c

a+ b
= 4.

A Naive Approach

A computer search yields the solution (−11,−4, 1), which we can check:

−11

−4 + 1
+

−4

−11 + 1
+

1

−11− 4
=

11

3
+

2

5
− 1

15
= 4,

as desired. However, a and b are negative, and we wanted a solution in the positive integers. Unfor-
tunately, this is the furthest a computer search can assist—while running a program longer may find
another negative solution, it will not find a positive solution.

In this talk we will present an overview of how to solve this problem.

2 Cubics and Weierstrass Normal Form

A cubic is an equation of the form

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0

with coefficients in Q.

It is known that such a cubic with a rational point can be rewritten in the form

y2 = x3 + ax+ b

called the Weierstrass Normal Form, by several change of variables. This is what we call an elliptic
curve, or the Weierstrass normal form of an elliptic curve.

Crucially, this transformation preserves the structure of rational points on the curve. In conclusion,
to understand the rational points on cubic equations, we only need to understand the rational points
on elliptic curves.

By the fundamental theorem of algebra, the complex roots of x3 + ax+ b come in pairs, so an elliptic
curve can have 1 or 3 real roots.

Example 1. In figure 1.1, the curve y2 = x3 − x meets three times with the x-axis, so it has three
real solutions, while the curve y2 = x3 − x+1 meets only once with the x-axis, so it has only one real
solution.
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(a) Graph of y2 = x3 − x (b) Graph of y2 = x3 − x+ 1

Figure 1: Two Elliptic Curves

3 The Group Law

Rational Points on Elliptic Curves

First we define the set of rational points, and the point at infinity.

Definition 1 (Point at Infinity). The point at infinity O is the imagined point infinitely far along
the cubic where the two ends of the cubic meet (we assume that the two sides of the cubic meet at
this point).

Definition 2 (Rational Points). Given a curve f(x, y) = 0, the rational points on the curve are the
pairs x0, y0 ∈ Q such that f(x0, y0) = 0, together with a point at infinity O.

Alternatively, the set of rational points on an elliptic curve is the set of rational projective points on
the curve.

It turns out that O is a point of inflection, and a line OR through O and any normal point R is a
vertical line.

Unfortunately, some cubic curves may not be in good enough condition that allows us to apply the
properties we want. There are two types of problematic curves: curves that don’t have any rational
points or curves which aren’t smooth. For example, the curve x2 − 2y2 = 0 doesn’t have any rational
points. Non-smooth curves are called singular curves, which we don’t consider for this topic. Such
example is y2 = x3, which has a cusp at (0, 0).

If we get rid of the bad curves listed above, so if there is at least one rational point and the curve is
non-singular, the set of rational points on a cubic form an abelian group. Recall the definition of an
abelian group.

Definition 3 (Abelian Group). An abelian group is a set G equipped with a binary operation ∗
with four properties:

1. The existence of an identity: there is an element e ∈ G such that for all g ∈ G, e ∗ g = g ∗ e = g.

2. The existence of an inverse for each element: for all g ∈ G, there is h ∈ G such that g ∗ h =
h ∗ g = e.

3. Associativity: for all g, h, and j ∈ G, (g ∗ h) ∗ j = g ∗ (h ∗ j).

4. Commutativity: for all g and h ∈ G, g ∗ h = h ∗ g.
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We will only consider elliptic curves in Weierstrass normal form, though the group law may be defined
for any general non-singular cubic.

The Addition Law

Let C be a non-singular elliptic curve in Weierstrass normal form, and let Γ be the set of rational
points on C. Then define the group operation + of Γ as follows: to compute P +Q,

1. Take the line PQ going through P and Q.

2. Since a non-degenerate cubic and a line intersect in 3 projective points (accounting for multiplic-
ity), we may take the third point of intersection between PQ and the curve C, which we denote
as P ∗Q.

3. Take the vertical line O(P ∗Q).

4. P +Q is the third point of intersection between O(P ∗Q) and C, i.e. (P ∗Q) ∗ O.

All elliptic curves in Weierstrass normal form is symmetric with respect to the x-axis, so (P ∗Q) ∗ O
is simply the reflection of P ∗Q across the x-axis.

We first need to show closure, i.e. that the sum of two rational points P + Q is still a rational
point. We will use the following lemma.

Lemma 1. For any points P , Q ∈ Γ, P ∗ Q is also in Γ, i.e. P ∗ Q is also a rational point on the
elliptic curve.

Proof. First observe that since P and Q are rational, the line PQ

y = mx+ k

has rational coefficients. Thus the points of intersection of PQ and C satisfy the equations

y = mx+ k

y2 = x3 + ax+ b.

Substituting, we see that the x coordinates of the three points of intersection satisfy a cubic in x with
rational coefficients:

0 = x3 + ax+ b− (mx+ k)2.

If we let r1, r2, and r3 be the three roots to the equation, then by Vieta, r1r2r3 = b − k2, which is
rational. Since the line y = mx+ k and the curve y2 = x3 + ax+ b already meet at P and Q, r1 and
r2, which are x-coordinates of P and Q, are both rational. This forces r3 to be rational, and since r3
is the x-coordinate of P ∗Q, this gives that P ∗Q must be a rational point.

With this argument, since we know P ∗ Q and O are rational, (P ∗ Q) ∗ O = P + Q should also be
rational, which implies that + is closed under Γ.

Example 2. Consider the elliptic curve y2 = x3 − x+ 1, and two rational points P (1, 1) and Q(3, 5)
on the curve. We first find P ∗Q.

The line PQ has equation y = 2x − 1. Substituting gives (2x − 1)2 = x3 − x + 1, which reduces to
x3− 4x2+3x = x(x− 1)(x− 3) = 0. Since 1 and 3 are roots to the equation, the other root is 0. Thus
the x-coordinate of P ∗Q is 0.

To find the y-coordinate of P ∗Q, you simply substitute x = 0 on y = 2x−1 since P ∗Q is on this line.
This gives P ∗Q = (0,−1). Therefore, P +Q = (P ∗Q) ∗O is the reflection of (0,−1) with respect to
x-axis, which is (0, 1). The diagram of the process is shown below.

It is clear that this operation is commutative, as the line PQ is the same as the line QP . Using the
property that O is a point of inflection and the definition of the group law, we get
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Figure 2: Elliptic Curve Addition

• O +O = O

• O + P = P +O = P .

Thus O is the identity.

The last property to show is associativity. For any points P,Q,R ∈ Γ, it is not evident that

P + (Q+R) = P + (Q+R).

This will be proved in the next few sections.

4 Cayley-Bacharach Theorem

The following theorem is used as a lemma to prove associativity.

Theorem 1 (Cayley-Bacharach Theorem). Suppose two cubics C1 and C2 intersect at 9 points. Any
cubic C that passes through eight of the nine intersections of C1 and C2 must also pass through the
ninth intersection.

Figure 3: Three Cubics at Nine Points
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To make the theorem intuitive, see the diagram above. Suppose the blue and green graphs are cubic
curves (they are cubic curves even though it is not drawn outside of ±8) meet at nine points. Then
if any cubic, drawn in red, passes eight of the nine intersection, then it also pass the remaining one
intersection.

For a proof see Terence Tao’s blog on ”Pappus’s Theorem and Elliptic Curves” [4].

Applications

The Cayley-Bacharach Theorem can be used to give a pretty proof of two theorems in Euclidean
geometry.

Theorem 2 (Pappus’s Theorem). Let A1, A2, and A3 be points on a line ℓ and B1, B2, B3 be points
on another line m. If X1 is the intersection of A2B3 and A3B2, X2 the intersection of A1B3 and
A3B1, and X3 the intersection of A1B2 and A2B1, then X1, X2, X3 are colinear.

Figure 4: Pappus’s Theorem

Proof. We will use the fact that the union of three lines is a degenerate cubic. To see this, note that
a line is an equation of the form

ax+ by + c = 0.

Then the union of three lines is

(a1x+ b1y + c1)(a2x+ b2y + c2)(a3x+ b3y + c3) = 0,

an equation of degree 3.

Then consider the following 3 cubics

1. C1 = A1B2 ∪A2B3 ∪A3B1,

2. C2 = A2B1 ∪A3B2 ∪A1B3,

3. C3 = ℓ ∪m ∪X1X3.

The three cubics simultaneously intersect at eight points: A1, A2, A3, B1, B2, B3, X1, X3, and C1

and C2 intersect at X3 as well. Therefore, by Cayley-Bacharach, C3 passes through X3 as well.

A similar proof is possible for another classical result.

Theorem 3 (Pascal’s Theorem). Let c be a conic, with points A,B,C,D,E, F on c. Let X1 be the
intersection of AB and DE, X2 be the intersection of BC and EF , and X3 be the intersection of CD
and FA. Then X1, X2, X3 are colinear.

Proof. Consider the following cubics: Then consider the following 3 cubics
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Figure 5: Pascal’s Theorem

1. C1 = A1B2 ∪A2B3 ∪A3B1,

2. C2 = A2B1 ∪A3B2 ∪A1B3,

3. C3 = c ∪X1X3.

The proof proceeds in the same way with the proof to the Pappus’s theorem.

5 Associativity of the Group Law

Having seen some applications of the Cayley-Bacharach Theorem, we will now apply it to prove the
associativity of the group law on elliptic curves.

Theorem 4 (Associativity of the Group Law). Suppose C is a nonsingular elliptic curve in Weierstrass
normal form, Γ the set of rational points on C, and P , Q, R any points in Γ. Then

(P +Q) +R = P + (Q+R).

Proof. Define six lines:

• ℓ1 the line passing P , Q, and P ∗Q,

• ℓ2 the line passing Q ∗R, O, and Q+R,

• ℓ3 the line passing P +Q, R, and (P +Q) ∗R,

• m1 the line passing Q, R, and Q ∗R,

• m2 the line passing P ∗Q, O, P +Q,

• m3 the line passing Q+R, P , P ∗ (Q+R).

Now, define two cubics C1 and C2 by C1 = ℓ1 ∪ ℓ2 ∪ ℓ3 and C2 = m1 ∪m2 ∪m3. Then C and C1 have
nine intersections, which are

O, P , Q, R, P ∗Q, Q ∗R, P +Q, Q+R, and (P +Q) ∗R.

Since C2 passes eight of the nine intersections, which are

O, P , Q, R, P ∗Q, Q ∗R, P +Q, and Q+R,

applying Cayley-Bacharach gives that C2 should pass through the ninth intersection, which is (P +
Q)∗R. But it is given that C2 and C already have a ninth intersection, namely P ∗ (Q+R), we should
have

(P +Q) ∗R = P ∗ (Q+R).

Therefore
(
(P +Q) ∗R

)
∗ O =

(
P ∗ (Q+R)

)
∗ O, i.e. (P +Q) +R = P + (Q+R), as desired.

6



6 The Original Problem

We now come back to the original problem that we introduced earlier, and will try to find a positive
integer solution to the equation

a

b+ c
+

b

c+ a
+

c

a+ b
= 4.

First, notice that all the expressions on the numerator and the denominator are linear, so they are
homogeneous. This means if (a0, b0, c0) is a solution, then (2a0, 2b0, 2c0) is also a solution, so as
(3a0, 3b0, 3c0), and (na0, nb0, nc0) for any positive integer n. So what really matters is the ratio
between solutions. Thus, we could fix one variable as 1!

For each fraction, divide c from both the numerator and the denominator. This gives

a
c

b
c + 1

+
b
c

a
c + 1

+
1

a
c + b

c

= 4.

This is now an equation with two variables! This is still better even though the variables are now
positive rational numbers. Rewriting the equation gives

x

y + 1
+

y

x+ 1
+

1

x+ y
= 4.

Getting rid of the denominator, we get the following equation:

x(x+ 1)(x+ y) + y(y + 1)(x+ y) + (x+ 1)(y + 1) = 4(x+ 1)(y + 1)(x+ y),

Rearranging gives

x3 − 3x2y − 3xy2 + y3 − 3x2 − 5xy − 3y2 − 3x− 3y + 1 = 0.

Recall the integral solution we found earlier: (a, b, c) = (−11,−4, 1). This gives (x, y) = (−11,−4),
which is a pair of solutions of this equation.

If you make substitutions and change to Weierstrass normal form, then it will be in the form

y2 = x3 + 109x2 + 224x.

We have mentioned that the transformation to Weierstrass normal form preserves the rational points
on the curve. The rational point (−11, 4) is mapped to the point P (−100, 260), which is a rational
point on the elliptic curve y2 = x3 + 109x2 + 224x.

We now to try to find a point on the elliptic curve y2 = x3 + 109x2 + 224x that corresponds to a
rational point on

x3 − 3x2y − 3xy2 + y3 − 3x2 − 5xy − 3y2 − 3x− 3y + 1 = 0

whose x-coordinate and y-coordinate are both positive. We try with a new point. Calculating P +P =
2P gives

P + P = 2P =

(
8836

25
,−950716

125

)
,

which corresponds to the solution (x, y) =

(
9499

5165
,−8784

5165

)
. Still not positive. We try more.

Since the operation + is commutative and associative, we have 2P + 2P = P + 3P . So the points
don’t depend on the order of how you apply +, and only depends on how many times you applied
the operation +. Looking for the corresponding rational points for 3P , 4P , . . . gives that the desired
positive rational point occurs at 9P , which is

9P =

(
66202368404229585264842409883878874707453676645038225

13514400292716288512070907945002943352692578000406921
,

58800835157308083307376751727347181330085672850296730351871748713307988700611210

1571068668597978434556364707291896268838086945430031322196754390420280407346469

)
.
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This corresponds to the solution

(x, y) =

(
154476802108746166441951315019919837485664325669565431700026634898253202035277999

4373612677928697257861252602371390152816537558161613618621437993378423467772036
,

36875131794129999827197811565225474825492979968971970996283137471637224634055579

4373612677928697257861252602371390152816537558161613618621437993378423467772036

)
.

Therefore we get that the triplet (a, b, c), where

a = 154476802108746166441951315019919837485664325669565431700026634898253202035277999

b = 36875131794129999827197811565225474825492979968971970996283137471637224634055579

c = 4373612677928697257861252602371390152816537558161613618621437993378423467772036,

is a positive integral solution to the equation

a

b+ c
+

b

c+ a
+

c

a+ b
= 4.

One surprising fact is that this is the smallest solution! It can be proved that this is the smallest
solution, but it’s omitted here. We will touch on this again later.

7 The Structure of the Group of Rational Points

Now that we have a group Γ, one important question to consider is how we can describe every element
of the group, i.e. every rational point on a given elliptic curve. We have seen that if we had two (or
even one) rational points, we can generate another one by the group law. Does this process cover all
the rational points?

Definition 4 (Finitely Generated Abelian Group). An abelian group (G,+) is finitely generated
if there exist a finite set of elements {a1, a2, . . . , an} such that any g ∈ G can be expressed as a finite
sum

g =

n∑
i=0

niai,

where ni is the number of ais that appear for each i = 1, 2, . . . , n that may differ.

Example 3. We have the following finitely generated abelian groups.

1. (Z,+) is finitely generated by 1.

2. (Z[i],+) is finitely generated by 1, i.

3. (Z[x],+) is not finitely generated. The basis {1, x, x2, . . . } is a basis for (Z[x],+), but this set is
infinite.

The following theorem states that for any elliptic curve C, the set of rational points Γ on C is finitely
generated.

Theorem 5 (Mordell’s Theorem). The group of rational points on an elliptic curve is finitely gener-
ated.

This is a powerful theorem, which says that we only need a finite set of points to find all rational
points of the elliptic curve.

Definition 5 (Rank). The rank of an elliptic curve is the number of rational points you need to
generate (Γ,+), i.e. all of the rational points.

If we revisit the elliptic curve in our problem, it is known that the elliptic curve y2 = x3+109x2+224x
has rank one and is isomorphic to Z/6Z ⊕ Z[2] so it is sufficient to find two elements generating the
group. It turns out that the generator of the infinite part of the group is precisely our point P , though
this is not easy to show.
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8 Some Open Questions

The rank of an elliptic curve is a very mysterious object, and there are a number of open problems
surrounding it.

Conjecture 1. As X → ∞, the average rank of elliptic curves with height less than X is 0.5. In
particular, 50% have rank 0, 50% have rank 1, and 0% have rank > 1.

The height is defined as max(4|a|3, 27b2), and it allows us to make a statement about density. The
current best known bound on the average rank is 7/6 [5].

Conjecture 2. The maximum rank of an elliptic curve is bounded.

The current record is an elliptic curve of rank at least 29, found in 2024 by Elkies and Klagsbrun[1].

Conjecture 3 (Birch-Swinnerton-Dyer Conjecture [3]). The rank of an elliptic curve E is the order
of the zero of L(E, s) at s = 1.
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