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This handout covers about Laplace transforms that are used to solve ordinary
differential equations. Laplace transform is a useful technique in solving ordi-
nary differential equations. We look over definition, properties, and techniques for
solving differential equations.

1 Definition of the Laplace Transform

Definition 1.1: Laplace Transform

Let f be a function defined for t ≥ 0. Then the integral

L {f(t)} =

∫ ∞

0

e−stf(t) dt

is said to be the Laplace Transform of f provided the integral converges.

We usually use the notation

L {f(t)} = F (s), L {g(t)} = G(s), and L {y(t)} = Y (s).

Example 1
Evaluate L {1}.

Solution

L {1} =

∫ ∞

0

e−st · 1 dt = −e−st

s

∣∣∣∣∞
0

= lim
b→∞

−e−sb + 1

s
=

1

s

provided s > 0. If s < 0, the integral diverges.

Example 2
Evaluate L {eat}, where a is any real number.
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Solution

L {eat} =

∫ ∞

0

e−steat dt =
e(−s+a)t

−s+ a

∣∣∣∣∞
0

= lim
b→∞

e(−s+a)b − 1

−s+ a
=

1

s− a

provided s > a. If s < a, the integral diverges.
From now on, we use the notation

∫∞
0

f(t) dt as limb→∞
∫ b

0
f(t) dt. Also, we

assume that the conditions for s are satisfied.

Theorem 1.1: Linearity of the Laplace Transform

Suppose that there exists L {f1} and L {f2} for s > a1 and s > a2. Then,
for s > max{a1, a2},

L {c1f1 + c2f2} = c1L {f1(t)}+ c2L {f2(t)}.

Proof.

L {c1f1 + c2f2} =

∫ ∞

0

e−st(c1f1(t) + c2f2(t)) dt

= c1

∫ ∞

0

e−stf1(t) dt+ c2

∫ ∞

0

e−stf2(t) dt

= c1L {f1(t)}+ c2L {f2(t)}. ■

Some transforms of basic functions are:

L {1} =
1

s

L {tn} =
n!

sn+1
, n = 1, 2, 3 . . . , L {eat} =

1

s− a

L {sin kt} =
k

s2 + k2
, L {cos kt} =

s

s2 + k2

Example 3
Evaluate L {t− t2 + 2e4t}.

Solution

L {t− t2 + 2e4t} = L {t} − L {t2}+ 2L {e4t} =
1

s
+

2

s2
− 2

s− 4
.

Of course, the improper integral
∫∞
0

f(t)est dt might not exist. Then, when
does the Laplace transform exist? We propose a theorem of a condition for ex-
istence. We first define two terminologies, piecewise continuous and exponential
order.
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Definition 1.2: Piecewise Continuous Function

A function f is piecewise continuous when the number of discontinuous points
in (−∞,∞) are finite.

Definition 1.3: Exponential Order

A function f is of exponential order when there exists constants a, k > 0 and
T > 0 such that

f(t) ≤ keaT .

This means that f should be eventually smaller than an exponential function.
For example, f(t) = tn is of exponential order for any natural number n, but
f(t) = et

2

is not of exponential order.

Theorem 1.2: Sufficient Condition for the Existence of Laplace Transform

Suppose f is piecewise continuous on [0,∞) and of exponential order. Then
the Laplace transform of f exists for s > 0.

Proof. We divide [0,∞) to [0, T ) and [T,∞).∫ ∞

0

e−stf(t) dt =

∫ T

0

e−stf(t) dt+

∫ ∞

T

e−stf(t) dt.

We get that
∫ T

0
e−stf(t) dt is finite. Since f is of exponential order, there exists

some constants a, k > 0 and T > 0 such that

|f(t)| ≤ Mect for t > T.

Therefore, ∣∣∣∣ ∫ ∞

T

e−stf(t) dt

∣∣∣∣ ≤ ∫ ∞

T

|e−stf(t)| dt

≤ M ·
∫ ∞

0

e−st · ect dt

= M · e
−(s−c)T

s− c
for s > c. ■

We now know about existence, but how about uniqueness? What if there are
two different Laplace transforms for a function? That is actually not the case, and
Laplace transform is unique. However, the proof of uniqueness is beyond this level,
so we do not state here. From now on, one can assume that Laplace transforms of
functions are unique.
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Theorem 1.3: Uniqueness of the Laplace Transform

Assume that f , g : [0,∞) → R are continuous and of exponential order. If
L {f(t)} = L {g(t)}, the f(t) = g(t).

2 The Inverse Laplace Transform

Definition 2.1: Inverse Laplace Transform

If F (s) = L {f(t)} we say that f(t) is the Inverse Laplace Transform of
F (s).

f(t) = L −1{F (s)}

Inverse transforms of some functions are:

L −1

{
1

s

}
= 1

L −1

{
n!

sn+1

}
= tn, n = 1, 2, 3 . . . , L

{
1

s− a

}
= eat

L

{
k

s2 + k2

}
= sin kt, L

{
s

s2 + k2

}
= cos kt

Like the Laplace transform, the inverse transform is also linear.

Theorem 2.1: Linearity of the Inverse Transform

The inverse Laplace transform is a linear transform. That is, for constants
c1 and c2,

L −1{c1F (s) + c2G(s)} = c1L
−1{F (s)}+ c2L

−1{G(s)}.

Example 4

Evaluate L −1

{
1

s4

}
.

Solution
L −1

{
1

s4

}
=

1

3!
L −1

{
3!

s4

}
=

1

6
t3.

Example 5

Evaluate L −1

{
2s+ 3

s2 + 9

}
.
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Solution

L −1

{
2s+ 3

s2 + 9

}
= L −1

{
2 · s

s2 + 9
+

3

s2 + 9

}

= 2L −1

{
s

s2 + 9

}
+ L −1

{
3

s2 + 9

}
= 2 cos 3t+ sin 3t.

3 Transforms of Derivatives and Integrals

In this section, we see some properties of Laplace transforms and how they can be
used to solve ordinary differential equations.

Theorem 3.1: Transforms of Derivatives

If f ′ is continuous on [0,∞) and assume that f is of exponential order. Then,

L {f ′(t)} = sF (s)− f(0).

If f, f ′, · · · , f (n−1) are continuous on [0,∞) and are of exponential order, and
if f (n)(t) is piecewise continuous on [0,∞), then

L {f (n)(t)} = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

Proof. We use induction. For n = 1,

L {f ′(t)} =

∫ ∞

0

e−stf ′(t) dt

= e−stf(t)

∣∣∣∣∞
0

+ s

∫ ∞

0

e−stf(t) dt

= −f(0) + sL {f(t)}

= sF (s)− f(0).

Assume the equation holds for n = k. So,

L {f (k)(t)} = skF (s)− sk−1f(0)− sk−2f ′(0)− · · · − f (k−1)(0).
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For n = k + 1,

L {f (k+1)(t)} =

∫ ∞

0

e−stf (k+1)(t) dt

= e−stf (k)(t)

∣∣∣∣∞
0

+ s

∫ ∞

0

e−stf (k)(t) dt

= −f (k)(0) + sL {f (k)(t)}

= s(skF (s)− sk−1f(0)− sk−2f ′(0)− · · · − f (k−1)(0))− f (k)(0)

= sk+1F (s)− skf(0)− sk−1f ′(0)− · · · − f (k)(0),

which completes the induction. ■

Theorem 3.2: Transforms of Integrals

If f is piecewise continuous on [0,∞) and assume that f is of exponential
order. Then,

L

{∫ t

0

f(τ) dτ

}
=

F (s)

s
, and

L −1

{
F (s)

s

}
=

∫ t

0

f(τ) dτ.

Proof. Let g(t) =
∫ t

0
f(τ) dτ . We first prove that g(t) is of exponential order. Since

f is of exponential order, there exists k, a and τ such that |f(t)| ≤ keat. Then,

|g(t)| =
∣∣∣∣ ∫ t

0

f(τ) dτ

∣∣∣∣ ≤ ∫ t

0

|f(τ)| dτ ≤
∫ t

0

keaτ dτ =
k

a
(eat − 1) <

k

a
eat,

which shows that g is also of exponential order. Also, since d
dtg(t) = f(t), and

g(0) = 0, by the Transforms of Derivatives theorem,

L {f(t)} = L

{
d

dt
g(t)

}
= sL {g(t)}(s)− g(0) = sL {g(t)}.

Dividing by s for both sides gives us

L {g(t)} = L

{∫ t

0

f(τ) dτ

}
=

F (s)

s
. ■

Example 6

Evaluate L −1

{
1

s(s2 + 1)

}
.
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Solution

L −1

{
1

s(s2 + 1)

}
= L −1

{
1

s
· 1

s2 + 1

}

=

∫ t

0

sinτ dτ

= 1− cost.

Example 7

Evaluate L −1

{
1

s2(s2 + 1)

}
.

Solution

L −1

{
1

s2(s2 + 1)

}
= L −1

{
1

s
· 1

s(s2 + 1)

}

=

∫ t

0

(1− cosτ) dτ

= t− sint.

Solving Differential Equations with Laplace Transforms
Laplace transforms can be used in solving ordinary differential equations, especially
initial-value problems. The steps for solving initial-value problems are:

1. Apply the Laplace transform for both sides of the initial-value problem.

2. Solve the equation with respect to F (s).

3. Apply the inverse transform to the solution of F (s), and you get the solution
f(t) to the initial-value problem.

Example 8
Solve y′ + y = 2cost, y(0) = 1.

Solution Applying Laplace transform to both sides gives you

sY (s)− y(0) + Y (s) = 2 · s

s2 + 1

(s+ 1)Y (s)− 1 = 2 · s

s2 + 1
.
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If you solve for Y (s), you get

Y (s) =
1

s+ 1
+

2s

(s+ 1)(s2 + 1)

=
s

s2 + 1
+

1

s2 + 1
.

If you apply the inverse transform for both sides, you finally obtain

y(t) = cos t+ sin t

which is the solution of the equation given.

4 Translation Theorems

Theorem 4.1: First Translation Theorem

If L {f(t)} = F (s) and a is any real number, then

L {eatf(t)} = F (s− a), and

L −1{F (s− a)} = eatf(t).

We also use the notation F (s)

∣∣∣∣
s→s−a

for F (s− a).

Proof.

L {eatf(t)} =

∫ ∞

0

e−(s−a)tf(t) dt

= F (s− a). ■

Example 9
Evaluate L {e2tt5}.

Solution

L {e2tt5} = L {t5}s→s−2 =
5!

s6

∣∣∣∣
s→s−2

=
120

(s− 2)6
.

Example 10

Evaluate L −1

{
s

s2 − 4s+ 13

}
.

8



Laplace Transforms Joshua Im (July 29, 2023)

Solution

L −1

{
s

s2 − 4s+ 13

}
= L −1

{
s+ 2

s2 + 9

∣∣∣∣
s→s−2

}

= L −1

{(
s

s2 + 9
+

2

3
· 3

s2 + 9

)∣∣∣∣
s→s−2

}

= e2t cos 3t+
2

3
e2t sin 3t.

Example 11
Solve y′′ − 2y′ + 1y = tet, y(0) = 0, y′(0) = 4.

Solution Applying Laplace transform to both sides gives you

L {y′′} − 2L {y′}+ L {y} = L {tet}

s2Y (s)− sy(0)− y′(0)− 2Y (s) + 2y(0) + Y (s) =
1

(s− 1)2

If you solve for Y (s), you get

(s2 − 2s+ 1)Y (s) = 4 +
1

(s− 1)2

Y (s) =
4

(s− 1)2
+

1

(s− 1)4
.

If you apply the inverse transform for both sides, you finally obtain

y(t) = 4tet +
1

6
t3et.

Definition 4.1: Unit Step Function

The unit step function U (t− a) is defined as

U (t− a) =

{
0 t < a

1 t ≥ a.

People also call this function as the heaviside function. However, we will call it as
unit step function here.

When a function is multiplied by U (t− a), the function becomes 0 for t < a,
and itself for t ≥ a. That is,

f(t)U (t− a) =

{
0 t < a

f(t) t ≥ a.

9
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If you want to shift the function a units to the right, you can take

f(t− a)U (t− a) =

{
0 t < a

f(t− a) t ≥ a.

Also, general piecewise functions of the type

f(t) =

{
g(t) t < a

h(t) t ≥ a.

can be expressed as

f(t) = g(t)−
(
g(t)− h(t)

)
U (t− a).

Similarly, piecewise functions of three cases

f(t) =


g(t) t < a

h(t) a ≤ t < b

g(t) t ≥ b

can be written

f(t) = g(t) +
(
h(t)− g(t)

)[
U (t− a)− U (t− b)

]
.

One can generalize this to functions of several cases, even more than three.

Theorem 4.2: Second Translation Theorem

If L {f(t)} = F (s) and a > 0, then

L {f(t− a)U (t− a)} = e−asF (s), and

L −1{e−asF (s)} = f(t− a)U (t− a).

This can also be written as

L {g(t)U (t− a)} = e−asL {g(t+ a)}

when you put g(t) = f(t− a).

10
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Proof.

L {f(t− a)U (t− a)} =

∫ a

0

e−stf(t− a)U (t− a) dt+

∫ ∞

a

e−stf(t− a)U (t− a) dt

=

∫ a

0

0 dt+

∫ ∞

a

e−stf(t− a)U (t− a) dt

=

∫ ∞

a

e−stf(t− a)U (t− a) dt.

If we substitute v = t− a, since dv = dt,

L {f(t− a)U (t− a)} =

∫ ∞

a

e−stf(t− a)U (t− a) dt

=

∫ ∞

a

e−s(v+a)f(v) dv

= e−as

∫ ∞

a

e−svf(v) dv

= e−asL {f(t)}. ■

Corollary : Laplace Transform of a Unit Step Function

L {U (t− a)} = e−asL

{
1

s

}
=

e−as

s

Example 12
Evaluate L {cos tU (t− π)}.

Solution

L {cos tU (t− π)} = e−πsL {cos(t+ π)} = −eπsL {cos t} = − s

s2 + 1
e−πs.

Example 13

Evaluate L −1

{
1

s− 2
e−6s

}
.

Solution
L −1

{
1

s− 2
e−6s

}
= e2(t−6)U (t− 6).

Example 14

Solve y′ − 2y = f(t), y(0) = 0, where f(t) =

{
0 0 ≤ t < π

sin t t ≥ π.

11
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Solution f(t) can be written as f(t) = sin tU (t− π).

Applying Laplace transform to both sides gives you

L {y′} − 2L {y′} = L {sin tU (t− π)}

sY (s)− y(0)− 2Y (s) =
1

s2 + 1
e−πs

If you solve for Y (s), you get

(s− 2)Y (s) = − 1

s2 + 1
e−πs

Y (s) = − 1

(s− 2)(s2 + 1)

=
1

5
· s+ 2

s2 + 1
− 1

5
· 1

s− 2

If you apply the inverse transform for both sides, you finally obtain

y(t) =
1

5
cos(t− π)U (t− π) +

2

5
sin(t− π)U (t− π)− 1

5
e2(t−π)U (t− π)

=

{
0 t < π
1
5 cos(t− π) + 2

5 sin(t− π)− 1
5e

2(t−π) t ≥ π.

The solution of a differential equation including unit step functions may not
be differentiable at some points. In this case, we differentiate piecewise, so that
the function is continuous, and each part of the function satisfies the differential
equation. For the example above, each side of the solution satisfies the differential
equation. Also, the solution is continuous because limt→π y(t) = 0 = y(π).

5 Derivatives and Integrals of Transforms

Theorem 5.1: Derivatives of Transforms

If L {f(t)} = F (s) and n = 1, 2, 3, · · · , then

L {tnf(t)} = (−1)n
dn

dsn
F (s), and

L −1

{
dn

dsn

}
= (−1)ntnf(t).

12
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Proof. We use induction. For n = 1, since

d

ds
F (s) =

d

ds

∫ ∞

0

e−stf(t) dt

=

∫ ∞

0

∂

∂s

(
e−stf(t)

)
dt (by Leibniz Rule)

=

∫ ∞

0

−e−st · tf(t) dt = −L {tf(t)}, and

L {tf(t)} = − d

ds
L {f(t)}.

Assume the equation holds for n = k. So,

L {tkf(t)} = (−1)k
dk

dsk
F (s).

For n = k + 1,

d

ds

(
(−1)k

dk

dsk
F (s)

)
= (−1)k

dk+1

dsk+1
F (s)

=
d

ds

∫ ∞

0

e−sttkf(t) dt

=

∫ ∞

0

∂

∂s

(
e−sttkf(t)

)
dt (by Leibniz Rule)

=

∫ ∞

0

−e−st · t · tkf(t) dt = −L {tk+1f(t)}.

Therefore,

L {tk+1f(t)} = (−1)k+1 dk+1

dsk+1
,

which completes the induction. ■

The Leibniz Rule used in the proof is a theorem that interchanges the derivative
operator with the partial derivative operator inside the integral.

d

ds

(∫ b

a

f(x, t) dt

)
=

∫ b

a

∂

∂x
f(x, t) dt.

13
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Theorem 5.2: Integrals of Transforms

If L {f(t)} = F (s), then

L

{
f(t)

t

}
=

∫ ∞

s

F (r) dr, and

L −1

{∫ ∞

s

F (r) dr

}
=

f(t)

t
.

Proof.∫ ∞

s

F (r) dr =

∫ ∞

s

(∫ ∞

0

e−rtf(t) dt

)
dr

=

∫ ∞

0

(∫ ∞

s

e−rtf(t) dr

)
dt (Changing the order of integration)

=

∫ ∞

0

e−st

t
f(t) dt

=

∫ ∞

0

e−st f(t)

t

= L

{
f(t)

t

}
. ■

Example 15

Evaluate L −1

{
ln

s+ 3

s− 2

}
.

Solution

Since
d

ds

(
ln

s+ 3

s− 2

)
=

d

ds

(
ln(s+ 3)− ln(s− 2)

)
=

1

s+ 3
− 1

s− 2
= L {−tf(t)},

−tf(t) = L −1

{
1

s+ 3
− 1

s− 2

}
= e−3t − e2t,

and f(t) =
e2t − e−3t

t
.

14
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Example 16
Solve y′′ + y = tet, y(0) = 0, y′(0) = 1.

Solution Apply Laplace transforms to both sides, we get

L {y′′}+ L {y} = L {tet}

s2Y (s)− sy(0)− y′(0) + Y (s) = − d

ds

1

s− 1

Solve for Y (s), then

(s2 + 1)Y (s) = 1 +
1

(s− 1)2

Y (s) =
1

s2 + 1
+

1

(s2 + 1)(s− 1)2

=
1

2

s

s2 + 1
+

1

s2 + 1
+

1

2

1

(s− 1)2
− 1

2

1

s− 1

Finally, applying inverse transform to both sides gives you the solution

y(t) =
1

2
cos t+ sin t+

1

2
tet − 1

2
et.

6 Convolution

Definition 6.1: Convolution

If functions f and g are piecewise continuous on the interval [0,∞), then the
convolution of f and g, denoted f ∗ g, is a function defined by

f ∗ g =

∫ t

0

f(τ)g(t− τ) dτ.

Example 17
Evaluate t ∗ sin t.

15
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Solution

et ∗ t =
∫ t

0

eτ · (t− τ) dτ

=

∫ t

0

(
teτ − τeτ

)
dτ

= tet − t− tet + et − 1 = et − t− 1.

Then, when is convolution used and why is it defined like this? The reason is
that it makes one able to multiply two transforms together! The theorem is called
the convolution theorem.

Theorem 6.1: Convolution Theorem

If L {f(t)} = F (s) and L {g(t)} = G(s), then

L {f ∗ g} = L {f(t)}L {g(t)} = F (s)G(s), and

L −1{F (s)G(s)} = f ∗ g.

Proof.

F (s) = L {f(t)} =

∫ ∞

0

e−sτf(τ) dτ and G(s) = L {g(t)} =

∫ ∞

0

e−sγg(γ) dγ.

Then,

F (s)G(s) =

(∫ ∞

0

e−sτf(τ) dτ

)(∫ ∞

0

e−sγg(γ) dγ

)

=

∫ ∞

0

∫ ∞

0

e−s(τ+γ)f(τ)g(γ) dτ dγ

=

∫ ∞

0

f(τ) dτ

∫ ∞

0

e−s(τ+γ)g(γ) dγ

If we let t = τ + γ, since dt = dγ, so

F (s)G(s) =

∫ ∞

0

f(τ) dτ

∫ ∞

τ

e−stg(t− τ) dt.

16
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Because f and g are piecewise continuous on [0,∞) and of exponential order,
we can change the order of integration. Therefore,

F (s)G(s) =

∫ ∞

0

e−st dt

∫ t

0

f(τ)g(t− τ) dτ

=

∫ ∞

0

e−st

(∫ t

0

f(τ)g(t− τ) dτ

)
dt

= L {f ∗ g}. ■

Corollary : Transforms of Integrals

L

{∫ t

0

f(τ) dτ

}
=

F (s)

s
.

Proof.

L

{∫ t

0

f(τ) dτ

}
= L

{∫ t

0

f(τ) · 1 dτ
}

= L {f(t) ∗ 1}

= L {f(t)} · L {1}

= F (s) · 1
s

=
F (s)

s
. ■

Example 18

Evaluate L

{∫ t

0

sin τ cos(t− τ) dτ

}
.

Solution

L

{∫ t

0

cos τ sin(t− τ) dτ

}
= L {cos t ∗ sin t}

= L {cos t} · L {sin t}

=
s

s2 + 1
· 1

s2 + 1

=
s

(s2 + 1)2
.
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Example 19

Evaluate L −1

{
1

(s2 + k2)2

}
.

Solution

L −1

{
1

(s2 + k2)2

}
= L −1

{
1

s2 + k2
· 1

s2 + k2

}

=
1

k2
L −1

{
k

s2 + k2
· k

s2 + k2

}
=

1

k2
(sin t ∗ sin t)

=
1

k2

∫ t

0

sin kτ sin k(t− τ) dτ

=
1

k2

∫ t

0

1

2

(
cos k(2τ − t)− cos kt

)
dτ

=
1

2k2

[
1

2k
sin k(2τ − t)− τ cos kt

]t
0

=
sinkt− ktcoskt

2k3
.

Properties of Convolution
Convolution has the following properties:

• The associative property, i.e. f ∗ (g ∗ h) = (f ∗ g) ∗ h

• The commutative property, i.e. f ∗ g = g ∗ f

• The distributive property, i.e. f ∗ (g + h) = f ∗ g + f ∗ h

• f ∗ 0 = 0 ∗ f = 0.

Integral Equations
There are not only differential equations, but also integral equations! Integral equa-
tions are simply equations that contain integrals. Solving integral equations are
very similar to solving differential equations, using Laplace transforms. Especially,
the convolution theorem is used frequently while solving integral equations. There
are also equations that contain both derivatives and integrals. Such equations are
called integrodifferential equations.

18
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Example 20

Solve y(t) +

∫ t

0

y(τ)et−τ = 3t2.

Solution First, we apply the Laplace transform for both sides.

L {y(t)}+ L

{∫ t

0

y(τ)et−τ

}
= L {3t2}

L {y(t)}+ L {y(t) ∗ et} = L {3t2}

L {y(t)}+ L {y(t)} · L {et} = L {3t2}

Y (s) +
1

s− 1
Y (s) =

6

s3

Then, solving for Y (s) gives

s

s− 1
Y (s) =

6

s3

Y (s) =
6s− 6

s4

=
6

s3
− 6

s4
= 3

2

s3
− 6

s4
.

Therefore, if you apply the inverse transform, you get the solution

y(t) = 3t2 − t3.

7 The Dirac Delta Function

Definition 7.1: Unit Impulse

The unit impulse function δa(t− t0) is defined as

δa(t− t0) =


0 t < t0 − a
1

2a
t0 − a ≤ t < t0 + a

0 t ≥ t0 + a

where a > 0 and t0 > 0.
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The unit impulse function has the following property:∫ ∞

0

δa(t− t0) = 1.

Definition 7.2: Dirac Delta Function

The Dirac delta function δ(t− t0) is defined by the limit

δ(t− t0) = lim
a→0

δa(t− t0).

The Dirac delta function has the following properties:

• δ(t− t0) =

{
∞ t = t0

0 t ̸= t0,
and

•
∫ ∞

0

δ(t− t0) dt = 1.

For usual functions,
∫ ∞

0

δ(t − t0) dt = 0, but actually
∫ ∞

0

δ(t − t0) dt = 1.

The Dirac delta function is not actually a function–it is a distribution. The Dirac
delta function doesn’t contain any meaning itself, but it is characterized with other
functions during integration.

Theorem 7.1: Shifting Property of Dirac Delta Function

If f is a continuous function, then∫ ∞

0

δ(t− t0)f(t) dt = f(t0).

Proof. ∫ ∞

0

δ(t− t0)f(t) dt = lim
a→0

∫ ∞

0

δa(t− t0)f(t) dt

= lim
a→0

1

2a

∫ t0+a

t0−a

f(t) dt

By the mean value theorem for integrals, there exists t̃ ∈ (t0 − a, t0 + a) such that∫ t0+a

t0−a

f(t) dt = 2af(t̃).
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Finally, ∫ ∞

0

δ(t− t0)f(t) dt = lim
a→0

1

2a

∫ t0+a

t0−a

f(t) dt

= lim
a→0

1

2a

(
2af(t̃)

)
= f(t0)

Since t̃ → 0 as a → ∞. ■

Theorem 7.2: Transform of the Dirac Delta Function

For t0 > 0,
L {δ(t− t0)} = e−st0 .

There are two proofs, using the shifting property or the unit step function. We
state both.

Proof. If we set f(t) = e−st, then

L {δ(t− t0)} =

∫ ∞

0

δ(t− t0) · e−st dt = e−st0

Since f(t0) = e−st0 . ■

Proof. We first write the Dirac delta function as a combination of unit step func-
tions.

δa(t− t0) =
1

2a

(
U

(
t− (t0 − a)

)
− U

(
t− (t0 + a)

))
.

If we apply the Laplace transform,

L {δa(t− t0)} = L

{
1

2a

(
U

(
t− (t0 − a)

)
− U

(
t− (t0 + a)

))}

=
1

2a

(
e−s(t0−a)

s
− e−s(t0+a)

s

)

= e−st0

(
eas − e−as

2as

)
.
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Since the Dirac delta function is the unit impulse when a → 0,

L {δ(t− t0)} = lim
a→0

L {δa(t− t0)}

= e−st0 lim
a→0

(
eas − e−as

2as

)

= e−st0 lim
a→0

(
seas + se−as

2as

)
(by L’Hôpital’s Rule)

= e−st0 . ■

Corollary

L {δ(t− 0)} = 1.

Solving differential equations containing the Dirac delta function is similar with
those without the Dirac delta function. The Dirac delta function comes out when
one generates a differential equation with a function that is not differentiable at
some point. The Dirac delta function in a differential equation doesn’t contain a
meaning itself, and something comes up only when one applies the Laplace trans-
form. Since an exponential function comes out when you apply Laplace transform
of the Dirac-delta function, the solution of the differential equation containing the
Dirac-delta function contains unit-step functions.

Example 21
Solve y′′ + y = δ(t− π), y(0) = −2, and y′(0) = 0.

Solution If you apply the Laplace transform for both sides, you get

s2Y (s) + 2s+ Y (s)− 0 = e−πs.

Then, solving for Y (s) gives you

(s2 + 1)Y (s) = −2s+ e−πs

Y (s) = −2 · s

s2 + 1
+

e−πs

s2 + 1

Using inverse transform theorem, you get

y(t) = −2 + sin(t− π)U (t− π)

=

{
−2 t < 2π

−2− t ≥ π.
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8 Systems of Differential Equations

Laplace transform can also be applied when solving systems of differential equa-
tions, mostly linear systems. After applying the Laplace transform, one can solve
the system of algebraic equations, and then apply the inverse theorem to get the
solution of the system.

Example 22
Solve

x′ + y = cos 2t

−x+ y′ = sin 2t.

when x(0) = 0 and y(0) = 0.

Solution Applying Laplace transform for both equations, you obtain the system of
equations

sX(s)− 0 + Y (s) =
s

s2 + 4

−X(s) + sY (s)− 0 =
2

s2 + 4

which is the same as

sX(s) + Y (s) =
s

s2 + 4

−X(s) + sY (s) =
2

s2 + 4
.

Solving the system of algebraic equations of X(s) and Y (s) yields

X(s) =
s2 − 2

(s2 + 1)(s2 + 4)
= − 1

s2 + 1
+

2

s2 + 4

Y (s) =
3s

(s2 + 1)(s2 + 4)
=

s

s2 + 1
− s

s2 + 4
.

Therefore, the solution is

x(t) = − sin t+ sin 2t

y(t) = cos t− cos 2t.
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9 Exercises

Orange problems are calculation problems, while blue problems are miscellaneous problems.

Exercise 1 (Transform of Trigonometric Functions)

Prove that L {sinαt} =
α

s2 + α2
and L {cosαt} =

s

s2 + α2
by using Euler’s For-

mula eix = cosx+ i sinx.

Exercise 2 (Not Exponential Order Function)
Explain why f(t) = et

2

is not of exponential order.

Exercise 3 (Two Functions of the Same Transform)
In section 1, we stated that the Laplace transform L {f(t)} is unique if f(t) is con-
tinuous on [0,∞). Find two functions f and g, not necessarily continuous, such that
L {f(t)} = L {g(t)}.

Exercise 4 (Transform of ta where α /∈ N)
The gamma function is defined by

Γ(α) =

∫ ∞

0

tα−1e−t dt

for α > 0. Use this formula to find L {tα} where α > −1 is any real number.

Exercise 5 (Transform of a Taylor Series)
Recall that the Taylor Series of a function is

f(x) =

∞∑
n=0

f (n)(0)

n!
xn.

Show that L {eat} = 1
s−a

by expanding eat as a Taylor series and using the formula
L {tn} = n!/sn+1.

Exercise 6
Solve y′′ + 4y = 5et − 10e−t, y(0) = 2, y′(0) = 7.

Exercise 7 (End Behavior of F (s))
If the Laplace transform of f(t) exists, prove that lims→∞ L {f(t)} = 0.

Exercise 8 (Initial Value Theorem)
If L {f(t)} = F (s), prove that

lim
t→0

f(t) = lim
s→∞

sF (s).
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Exercise 9 (Final Value Theorem)
If L {f(t)} = F (s), prove that

lim
t→∞

f(t) = lim
s→0

sF (s).

Exercise 10
Solve y′′ − 8y′ + 16y = t2e4t, y(0) = 0, y′(0) = 2.

Exercise 11

Solve y′ − 2y = f(t) with y(0) = 0, where f(t) =

{
2 t < 1

−2 t ≥ 1.

Exercise 12 (Laguerre’s Equation)
Solve ty′′ − (1 − t)y′ + ny = 0 by applying the Laplace transform and then solving
the linear equation with respect to Y (s).

Exercise 13

Solve f(t) +

∫ t

0

f(τ) dτ = 1.

Exercise 14

Solve y(t)− 2

∫ t

0

y(t− τ)e2t dτ = cos 2t.

Exercise 15 (Transform of Periodic Functions)
Prove that if f(t) is piecewise continuous on [0,∞), of exponential order, and periodic
with period T , then

L {f(t)} =
1

1− e−sT

∫ T

0

e−stf(t) dt.

Exercise 16
Solve y′′ + 9y = δ(t− π) + 2δ(t− 2π), y(0) = 0, y′(0) = 0.

Exercise 17
Solve the following system of differential equations

x′′ + 9x− 2y = 0

y′′ − 4x+ 4y = 0

where x(0) = 0, x′(0) = 1, y(0) = 0, y′(0) = −2.
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