Dirichlet's Theorem on Arithmetic Progressions

MATH 300 HNR Foundations of Mathematics, Texas A&M University

Joshua Im

November 26, 2024

Our goal is to prove the following theorem.

Theorem 1.1

If gcd(a, n) = 1, then there are infinitely many primes of the form on the arithmetic progression a + kn.

The proof is done by proving that $\sum_{\substack{p \equiv a \pmod{d} \\ p \text{ prime}}} \frac{1}{p}$ diverges. It is sufficient to prove

the following since if there are finitely many primes of the form a + nd, then $\sum_{n=1}^{\infty} \frac{1}{n}$ should converge.

 $\sum_{\substack{p \equiv a \pmod{d} \\ p \text{ prime}}} p$

To prove the following, we introduce a multiplicative function $\chi: U_n \to \mathbb{C}$. This is called a *Dirichlet character*.

Definition 1.1: Dirichlet Character

A Dirichlet chatacter mod m is a function, $\chi : U_m \to \mathbb{C}$ that is not identically zero and satisfies $\chi(ab) = \chi(a)\chi(b)$.

This definition can be extended to all of \mathbb{Z} by letting $\chi(a) = 0$ if gcd(a, m) > 1and $\chi(a + m) = \chi(a)$). With Dirichlet characters, Riemann-Zeta functions, and Dirichlet *L*-functions, we will prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

$$\sum_{\substack{p \equiv a \pmod{d} \\ p \text{ prime}}} \frac{1}{p} \text{ diverge}$$

Definition 2.1: Riemann-Zeta Function —

The **Riemann-Zeta function** $\zeta : \mathbb{R} \to \mathbb{R}_{>0}$ is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

We now want to look at for which values of s the function is defined. That is, for which values of s the series converge. This can be found by the integral test.

Lemma : Integral Test

Suppose that f(x) is a continuous, positive, and decreasing function on the interval $[k, \infty)$ for some $k \in \mathbb{Z}$ and let $f(n) = a_n$. Then

$$\int_{k}^{\infty} f(x) dx$$
 converges if and only if $\sum_{n=k}^{\infty} a_n$ converges

Proof. Note that by shifting, it is sufficient to prove the case when k = 1.

Let f(x) be the red curve. The integral $\int_{1}^{\infty} f(x) dx$ is equal to the area between f(x) and the x-axis on the interval $[1, \infty)$, which is clearly greater than

$$\sum_{n=2}^{\infty} 1 \cdot a_n = 1 \cdot a_2 + 1 \cdot a_3 + 1 \cdot a_4 + \cdots$$

Furthermore, the area is less than

$$\sum_{n=1}^{\infty} 1 \cdot a_n = 1 \cdot a_1 + 1 \cdot a_2 + 1 \cdot a_3 + \cdots.$$

If $\int_{1}^{\infty} f(x) dx$ diverges, then

$$\sum_{n=1}^{\infty} a_n > \int_1^{\infty} f(x) \ dx$$

will also diverge, and if $\int_1^{\infty} f(x) dx$ converge, then

$$\sum_{n=1}^{\infty} a_n = a_1 + \sum_{n=2}^{\infty} < a_1 + \int_1^{\infty} f(x) \, dx$$

will also converge since a_1 is finite.

Theorem 2.1 $\sum_{n=1}^{\infty} \frac{1}{n^s} \text{ converges if and only if } s > 1. \text{ Thus, the domain of } \zeta(s) \text{ is } s > 1.$

Proof. It is sufficient to prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converges if s > 1.

We have

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots$$
$$\geq 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots$$
$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots,$$

which goes to infinity. For s > 1, if we let $f(x) = x^{-s}$,

$$\int_{1}^{\infty} x^{-s} dx = \frac{1}{-s+1} x^{-s+1} \Big|_{1}^{\infty} = \frac{1}{s-1}.$$

Thus $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converges for s > 1 by the integral test.

Lemma : Basel Problem $\zeta(2) = \frac{\pi^2}{6}.$

Proof. We compute $\zeta(2)$ by approximating $\sin x$ as polynomials. The Taylor series of $\sin x$ is

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

We have another way to find a polynomial expression of $\sin x$. Since the roots of $\sin x$ are \cdots , -2π , $-\pi$, $0, \pi$, 2π , \cdots , we can express $\sin x$ as

$$\sin x = ax(x-\pi)(x+\pi)(x-2\pi)(x+2\pi)\cdots.$$

From the identity $\lim_{x\to 0} \frac{\sin x}{x} = 1$, we can find a, and

$$\sin x = x \left(1 + \frac{x}{\pi}\right) \left(1 - \frac{x}{\pi}\right) \left(1 + \frac{x}{2\pi}\right) \left(1 - \frac{x}{2\pi}\right) \cdots$$
$$= x \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdots$$

Therefore, we get

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = x \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \dots$$

Comparing the coefficients of x^3 , we get

$$-\frac{1}{3!} = -\frac{1}{\pi^2} - \frac{1}{4\pi^2} - \frac{1}{9\pi^2} = -\frac{1}{\pi^2} \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right).$$

 So

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

Lemma

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

Proof. Recall the sum of geometric series formula

$$1 + r + r^2 + \dots = \frac{1}{1 - r}$$

$$\begin{split} \text{if } |r| < 1. \text{ Since } \left| \frac{1}{p^s} \right| < 1, \text{ we have} \\ \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s} \right)^{-1} &= \prod_{p \text{ prime}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \\ &= \left(1 + \frac{1}{2^s} + \frac{1}{2^{2s}} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{3^{2s}} + \cdots \right) \left(1 + \frac{1}{5^s} + \frac{1}{5^{2s}} + \cdots \right) \cdots \\ &= 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots \\ &= \sum_{n=1}^{\infty} \frac{1}{n^s}. \end{split}$$

where the second last line follows from the unique prime factorization of positive integers greater than 1. $\hfill \Box$

Before the proof, we note that if z is some complex number such that |z| < 1, then the Taylor series for $-\log(1-z)$ is

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots$$

where log denotes the natural logarithm.

Proof. Note that
$$\left|\frac{1}{p^s}\right| < 1$$
. We have
 $\log \zeta(s) = \log \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$

$$= -\sum_{p \text{ prime}} \log \left(1 - \frac{1}{p^s}\right)$$
$$= \sum_{p \text{ prime}} \left(\frac{1}{p^s} + \frac{1}{2p^{2s}} + \frac{1}{3p^{3s}} + \cdots\right)$$
$$= \sum_{p \text{ prime}} \frac{1}{p^s} + \sum_{p \text{ prime}} \sum_{n \ge 2} \frac{1}{np^{ns}}$$
Claim.
$$\sum_{p \text{ prime}} \sum_{n \ge 2} \frac{1}{np^n} \text{ is bounded above by } \frac{\pi^2}{6}.$$

Since

$$\sum_{p \text{ prime}} \sum_{n \ge 2} \frac{1}{np^n} = \sum_{p \text{ prime}} \frac{1}{2p^2} + \frac{1}{3p^3} + \frac{1}{4p^4} + \cdots$$
$$\leq \sum_{p \text{ prime}} \frac{1}{p^2} + \frac{1}{p^3} + \frac{1}{p^4} + \cdots$$
$$= \sum_{p \text{ prime}} \frac{1}{p^2} \left(\frac{1}{1 - \frac{1}{p}}\right)$$
$$\leq \sum_{p \text{ prime}} \frac{1}{(p-1)^2}$$
$$< \sum_{n \in \mathbb{N}} \frac{1}{n^2},$$

 $\sum_{\substack{p \text{ prime } n \geq 2}} \sum_{\substack{n \geq 2 \\ 0 \text{ or } n}} \frac{1}{np^n} \text{ is bounded above by } \frac{\pi^2}{6}.$ We also see that this is bounded below

by 0 since all terms of the series is positive. Therefore,

$$\sum_{p \text{ prime}} \frac{1}{p} = \lim_{s \to 1^+} \sum_{p \text{ prime}} \frac{1}{p^s}$$
$$= \lim_{s \to 1^+} \log \zeta(s) - \sum_{p \text{ prime}} \sum_{n \ge 2} \frac{1}{np^n}$$
$$> \lim_{s \to 1^+} \log \zeta(s) - \frac{\pi^2}{6},$$

which diverges because $\log \zeta(1)$ diverges.

Dirichlet Characters

Definition 3.1: Dirichlet Character

A Dirichlet chatacter mod m is a function, $\chi : U_m \to \mathbb{C}$ that is not identically zero and satisfies $\chi(ab) = \chi(a)\chi(b)$.

We extend χ to all of \mathbb{Z} by letting $\chi(a) = 0$ if gcd(a, m) > 1 and periodicity, i.e. $\chi(a+m) = \chi(a)$).

🛛 Corollary 🗖

3

Dirichlet characters are totally multiplicative. That is, $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.

For every Dirichlet character, $\chi(1)$ should be 1. This is because

$$\chi(1)^2 = \chi(1^2) = \chi(1),$$

so $\chi(1) = 0$ or 1. However, if $\chi(1) = 0$, then χ is identically zero. Thus $\chi(1) = 1$ for every Dirichlet character.

From now on, we use the notation χ_0 for the *principal chatacter*, which is

$$\chi_0(a) = \begin{cases} 1 & \gcd(a, m) = 1 \\ 0 & \gcd(a, m) > 1 \end{cases}.$$

Example 1

There are exactly two Dirichlet characters mod 3:

$$\chi_0(a) = \begin{cases} 1 & a \equiv 1 \pmod{3} \\ 1 & a \equiv 2 \pmod{3} \\ 0 & a \equiv 0 \pmod{3} \end{cases} \text{ and } \chi_1(a) = \begin{cases} 1 & a \equiv 1 \pmod{3} \\ -1 & a \equiv 2 \pmod{3} \\ 0 & a \equiv 0 \pmod{3} \end{cases}$$

Example 2

There are exactly two Dirichlet characters mod 4:

$$\chi_0(a) = \begin{cases} 1 & a \equiv 1 \pmod{4} \\ 0 & a \equiv 2 \pmod{4} \\ 1 & a \equiv 3 \pmod{4} \\ 0 & a \equiv 0 \pmod{4} \end{cases} \text{ and } \chi_1(a) = \begin{cases} 1 & a \equiv 1 \pmod{4} \\ 0 & a \equiv 2 \pmod{4} \\ -1 & a \equiv 3 \pmod{4} \\ 0 & a \equiv 0 \pmod{4} \end{cases}$$

Example 3

There are exactly four Dirichlet characters mod 5:

$$\chi_{0}(a) = \begin{cases} 1 & a \equiv 1 \pmod{5} \\ 1 & a \equiv 2 \pmod{5} \\ 1 & a \equiv 3 \pmod{5} \\ 1 & a \equiv 3 \pmod{5} \\ 1 & a \equiv 4 \pmod{5} \\ 0 & a \equiv 0 \pmod{5} \end{cases} \qquad \chi_{1}(a) = \begin{cases} 1 & a \equiv 1 \pmod{5} \\ i & a \equiv 2 \pmod{5} \\ -i & a \equiv 3 \pmod{5} \\ -1 & a \equiv 4 \pmod{5} \\ 0 & a \equiv 0 \pmod{5} \end{cases}$$
$$\chi_{2}(a) = \begin{cases} 1 & a \equiv 1 \pmod{5} \\ -1 & a \equiv 2 \pmod{5} \\ -1 & a \equiv 2 \pmod{5} \\ -1 & a \equiv 4 \pmod{5} \\ 1 & a \equiv 4 \pmod{5} \\ 0 & a \equiv 0 \pmod{5} \end{cases} \qquad \chi_{3}(a) = \begin{cases} 1 & a \equiv 1 \pmod{5} \\ -i & a \equiv 2 \pmod{5} \\ -i & a \equiv 2 \pmod{5} \\ i & a \equiv 3 \pmod{5} \\ -1 & a \equiv 4 \pmod{5} \\ 0 & a \equiv 0 \pmod{5} \end{cases}$$

Definition 3.2: Dirichlet *L*-function

The **Dirichlet** *L*-function is defined as

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$

Lemma '

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}.$$

Proof. We have

$$\begin{split} \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1} &= \prod_{p \text{ prime}} \left(1 + \frac{\chi(p)}{p^s} + \frac{\chi(p)^2}{p^{2s}} + \cdots\right) \\ &= \prod_{p \text{ prime}} \left(1 + \frac{\chi(p)}{p^s} + \frac{\chi(p^2)}{p^{2s}} + \cdots\right) \\ &= \left(1 + \frac{\chi(2)}{2^s} + \frac{\chi(2^2)}{2^{2s}} + \cdots\right) \left(1 + \frac{\chi(3)}{3^s} + \frac{\chi(3^2)}{3^{2s}} + \cdots\right) \cdots \\ &= 1 + \frac{\chi(2)}{2^s} + \frac{\chi(3)}{3^s} + \frac{\chi(2^2)}{4^s} + \frac{\chi(5)}{5^s} + \frac{\chi(2)\chi(3)}{6^s} + \cdots \\ &= 1 + \frac{\chi(2)}{2^s} + \frac{\chi(3)}{3^s} + \frac{\chi(4)}{4^s} + \frac{\chi(5)}{5^s} + \frac{\chi(6)}{6^s} + \cdots \end{split}$$

$$=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}.$$

where the third last line follows from the unique prime factorization of positive integers greater than 1. $\hfill \Box$

Theorem 3.1 $\sum_{\substack{p \equiv 1 \pmod{4} \\ p \text{ prime}}} \frac{1}{p} \text{ diverges.}$

Proof. We consider the natural log of $L(1, \chi)$.

$$\log L(1,\chi) = \log \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p}\right)^{-1}$$
$$= \sum_{p \text{ prime}} -\log\left(1 - \frac{\chi(p)}{p}\right)$$
$$= \sum_{p \text{ prime}} \left(\frac{\chi(p)}{p} + \frac{\chi(p^2)}{2p^2} + \frac{\chi(p^3)}{3p^3} + \cdots\right)$$
$$= \sum_{p \text{ prime}} \frac{\chi(p)}{p} + \sum_{p \text{ prime}} \sum_{n \ge 2} \frac{\chi(p^n)}{np^n}$$

We see that

$$\sum_{p \text{ prime } n \ge 2} \left| \frac{\chi(p^n)}{np^n} \right| \le \sum_{p \text{ prime } n \ge 2} \frac{|\chi(p^n)|}{np^n} \le \sum_{p \text{ prime } n \ge 2} \frac{1}{np^n}$$

by the triangle inequality, so $\sum_{p \text{ prime } n \ge 2} \frac{\chi(p^n)}{np^n}$ is bounded by $-\frac{\pi^2}{6}$ and $\frac{\pi^2}{6}$. Then

$$\lim_{s \to 1^+} \log \zeta(s) + \log L(1,\chi) = \sum_{p \text{ prime}} \frac{1}{p} + \sum_{p \text{ prime}} \sum_{n \ge 2} \frac{1}{np^n} + \sum_{p \text{ prime}} \frac{\chi(p)}{p} + \sum_{p \text{ prime}} \sum_{n \ge 2} \frac{\chi(p^n)}{np^n} = 2 \sum_{\substack{p \equiv 1 \pmod{4}}} \frac{1}{p} + c$$

where c is a bounded constant. Since the left-hand side diverges, the right side

should also diverge, which implies that

$$\sum_{\substack{p \equiv 1 \pmod{4}} p \text{ prime}} \frac{1}{p} \text{ diverges.} \qquad \Box$$

This is one of the proofs that there are infinitely many primes that are of the form 1 + 4n. Similar argument can be used for primes of the form 3 + 4n.

Theorem 3.2 $\sum_{\substack{p \equiv 3 \pmod{4}}} \frac{1}{p} \text{ diverges.}$ p prime

Proof.

Claim.
$$\lim_{s \to 1^+} \log \zeta(s) - \log L(1,\chi)$$
 diverges.

It is sufficient to show that $\lim_{s \to 1^+} \frac{\zeta(s)}{L(s,\chi)}$ diverges. We have

$$L(s,\chi) = \sum_{n\equiv 1 \pmod{4}} \frac{1}{n^s} - \sum_{n\equiv 3 \pmod{4}} \frac{1}{n^s}$$
$$= \zeta(s) - \sum_{2|n} \frac{1}{n^s} - 2 \sum_{n\equiv 3 \pmod{4}} \frac{1}{n^s}$$
$$\ge \zeta(s) - \sum_{2|n} \frac{1}{n^s} - 2 \sum_{4|n} \frac{1}{n^s}$$
$$= \left(1 - \frac{1}{2^s} - \frac{2}{4^s}\right) \zeta(s),$$

 \mathbf{SO}

$$\lim_{s \to 1^+} \frac{\zeta(s)}{L(s,\chi)} \ge \lim_{s \to 1^+} \frac{4^s}{4^s - 2^s - 2},$$

and this diverges. We have

$$\log \zeta(s) - \log L(s,\chi) = 2 \sum_{\substack{p \equiv 3 \pmod{4} \\ p \text{ prime}}} \frac{1}{p^s} + c,$$

where c is a bounded constant. Letting $s \to 1^+$, since the left hand side diverges,

$$\sum_{\substack{p \equiv 3 \pmod{4}}{p \text{ prime}}} \frac{1}{p} \text{ also diverges.} \qquad \Box$$

Generalizations

Denote \mathbb{D}_m as the set of all Dirichlet characters modulo m. Note that U_m forms a group under multiplication, and \mathbb{D}_m also forms a group under the binary operation $(\chi_1 * \chi_2)(a) = \chi_1(a)\chi_2(a)$.

Theorem 4.1

4

There are exactly $\varphi(m)$ Dirichlet characters modulo m.

Solution Note that U_m has $\varphi(m)$ elements.

Claim. U_m is isomorphic to \mathbb{D}_m .

Let $m = 2^t p_1^{k_1} p_2^{k_2} \cdots p_s^{k_s}$. Then, $U_m = U_{2^t} \times U_{p_1^{k_1}} \times \cdots \times U_{p_s^{k_s}}$.

- if t = 1, then U_2 is generated by 1.
- if t = 2, then U_4 is generated by 3.
- if t > 2, then since 3 has order 2^{t-2} , and -1 is not a power of 3, U_{2^t} is generated by 3 and -1.

Also, we can find generators of each $U_{p_i^{k_i}}$ because $U_{p_1^{k_1}}, U_{p_2^{k_2}}, \ldots, U_{p_s^{k_s}}$ are cyclic. Finally, the mapping

$$3^{a}(-1)^{b}g_{1}^{l_{1}}g_{2}^{l_{2}}\cdots g_{s}^{l_{s}} \mapsto \left(e^{\frac{2\pi ic}{\varphi(2^{t})}}, e^{\frac{2\pi il_{1}}{\varphi(p_{1}^{k_{1}})}}, e^{\frac{2\pi il_{2}}{\varphi(p_{2}^{k_{2}})}}, \dots, e^{\frac{2\pi il_{s}}{\varphi(p_{s}^{k_{s}})}}\right)$$
$$\mapsto (\chi(c), \chi(g_{1}), \chi(g_{2}), \dots, \chi(g_{s}))$$
$$\mapsto \chi$$

implies that U_m is isomorphic to \mathbb{D}_m .

Thus, U_m and \mathbb{D}_m has the same cardinality, which is $\varphi(m)$.

Lemma

If χ is a Dirichlet character mod m, then $\overline{\chi}$, the function that takes conjugate values of χ , is also a Dirichlet character.

Proof. We have

$$\overline{\chi}(ab) = \overline{\chi(ab)} = \overline{\chi(a)\chi(b)} = \overline{\chi(a)} \cdot \overline{\chi(b)} = \overline{\chi}(a)\overline{\chi}(b).$$

Also, if gcd(a,m) > 1, then $\overline{\chi(a)} = \overline{0} = 0$, and since

$$\overline{\chi}(a+m) = \overline{\chi(a+m)} = \overline{\chi(a)} = \overline{\chi}(a),$$

 $\overline{\chi}$ is also a Dirichlet character.

Theorem 4.2 $L(1, \chi_0)$ diverges.

Proof. We see that

$$\begin{split} L(s,\chi_0) &= \prod_{p \text{ prime}} \left(1 - \frac{\chi_0(p)}{p^s} \right)^{-1} \\ &= \prod_{p \nmid m} \left(1 - \frac{1}{p^s} \right)^{-1} \prod_{p \mid m} \left(1 - \frac{0}{p^s} \right)^{-1} \\ &= \prod_{p \nmid m} \left(1 - \frac{1}{p^s} \right)^{-1} \\ &= \prod_{p \nmid m} \left(1 - \frac{1}{p^s} \right)^{-1} \cdot \frac{\prod_{p \mid m} \left(1 - \frac{1}{p^s} \right)^{-1}}{\prod_{p \mid m} \left(1 - \frac{1}{p^s} \right)^{-1}} \\ &= \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s} \right)^{-1} \cdot \frac{\prod_{p \mid m} \left(1 - \frac{1}{p^s} \right)^{-1}}{\prod_{p \mid m} \left(1 - \frac{1}{p^s} \right)} \\ &= \zeta(s) \cdot \prod_{p \mid m} \left(1 - \frac{1}{p^s} \right). \end{split}$$

Here, $\prod_{p|m} \left(1 - \frac{1}{p^s}\right)$ should be finite since there are finite prime divisors of m, thus it is a finite product of finite terms. Therefore

$$\lim_{s \to 1^+} L(s, \chi_0) = \infty$$

since $\zeta(s)$ diverges as $s \to 1^+$.

Lemma
$$\sum_{\chi \in \mathbb{D}_m} \chi(n) = \begin{cases} \varphi(m) & n \equiv 1 \mod m \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Take any character ψ . Then $\chi(n) = \psi(n)\psi^{-1}(n)\chi(n)$.

Claim.
$$\psi^{-1}(n)\mathbb{D}_m = \{\psi^{-1}(n)\chi(n) \mid \chi \in \mathbb{D}_m\} = \mathbb{D}_m$$

Note that the set $\{\psi^{-1}(n)\chi(n) \mid \chi \in \mathbb{D}_m\}$ also forms a group under the binary operation of \mathbb{D}_m , with ψ the identity. If $\psi^{-1} * \chi_1 = \psi^{-1} * \chi_2$, then $\chi_1 = \chi_2$ by the left cancellation property. This gives that the set $\{\psi^{-1}(n)\chi(n) \mid \chi \in \mathbb{D}_m\}$ is equal to \mathbb{D}_m .

We have

$$\sum_{\chi \in \mathbb{D}_m} \chi(n) = \psi(n) \sum_{\chi \in \mathbb{D}_m} \psi^{-1}(n) \chi(n) = \psi(n) \sum_{\chi \in \mathbb{D}_m} \chi(n),$$

which implies that either $\psi(n)\neq 1$ and $\sum_{\chi\in\mathbb{D}_m}\chi(n)=0$, or $\psi(n)=1$ for all $\psi\in\mathbb{D}_m.$

If $n \equiv 1 \pmod{m}$, then $\chi(n) = 1$ for all $\chi \in \mathbb{D}_m$. Thus

$$\sum_{\chi\in\mathbb{D}_m}\chi(n)=\sum_{\chi\in\mathbb{D}_m}1=\varphi(m)$$

Claim. If $n \not\equiv 1 \pmod{m}$, then there is some $\chi \in \mathbb{D}_m$ such that $\chi(n) \neq 1$.

If $n \neq 1 \mod m$, then there exists $l_1, l_2, \ldots, l_r \neq 0$ such that $n = g_1^{l_1} g_2^{l_2} \cdots g_r^{l_r}$. Fix $s \in \{1, 2, \ldots, r\}$, and take the character that has

$$\chi(g_j) = \begin{cases} 1 & j \neq s \\ e^{\frac{2\pi i}{\varphi(p_s^{k_s})}} & j = s \end{cases}$$

This gives $\chi(n) \neq 1$, and hence $\sum_{\chi \in \mathbb{D}_m} \chi(n) = 0$, as desired. \Box

Theorem 4.3

$$\sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}n) = \begin{cases} \varphi(m) & n \equiv a \mod m \\ 0 & \text{otherwise.} \end{cases}$$

Proof. If $n \equiv a \pmod{m}$, then $a^{-1}n \equiv 1 \pmod{m}$, so $\sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}n) = \varphi(m)$. If $n \not\equiv a \pmod{m}$, then $a^{-1}n \not\equiv 1 \pmod{m}$, so $\sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}n) = 0$. \Box

Theorem 4.4

If χ is any Dirichlet character mod m, then $L(1,\chi) \neq 0$.

Proof. Recall that if χ is a Dirichlet character, then $\overline{\chi}$ is also a Dirichlet character. So $L(s,\overline{\chi}) = \overline{L(s,\chi)} = \overline{L(s,\chi)}$, which shows that the values of $L(s,\chi)$ come in conjugate pairs and hence $\prod_{\chi \in \mathbb{D}_m} L(s,\chi)$ is real. Since $\log L(s,\chi) = \sum_{p \text{ prime } n=1}^{\infty} \frac{\chi(p^n)}{np^{ns}}$, we have

$$\frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \log L(s,\chi) = \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \sum_{\substack{p \text{ prime } n=1}} \sum_{\substack{n=1 \\ p \text{ prime}}}^{\infty} \frac{\chi(p^n)}{np^{ns}}$$
$$= \sum_{\substack{p^n \equiv 1 \pmod{m}} n p \text{ prime}} \sum_{\substack{n=1 \\ p \text{ prime}}} \frac{1}{np^{ns}}$$

If we set s real and s > 1, then since the right hand side is real and nonnegative, the left hand side should also be real nonnegative. This gives

$$\sum_{\chi \in \mathbb{D}_m} \log L(s,\chi) \ge 0$$

and thus

$$\prod_{\chi \in \mathbb{D}_m} L(s,\chi) \ge 1.$$

Therefore $L(s, \chi) \neq 0$, and setting $s \to 1^+$ gives $L(1, \chi) \neq 0$.

Note that the proof is actually not complete: to finish the proof with stating that $L(s,\chi) \neq 0$ as $s \to 1^+$, we need to use the fact that the function $L(s,\chi)$ has a meromorphic continuation to $\{z \in \mathbb{C} \mid \Re(z) \geq 0\}$, with one simple pole at s = 1. This part is omitted since it is out of our boundary to prove this fact.

Theorem 4.5 $\sum_{\substack{p \equiv a \pmod{m} \\ p \text{ prime}}} \frac{1}{p} \text{ diverges.}$

Proof. We have

$$\sum_{\substack{p \equiv a \pmod{m}}} \frac{1}{p} = \frac{1}{\varphi(m)} \sum_{\substack{p \text{ prime } x \in \mathbb{D}_m}} \sum_{\substack{\chi(a^{-1}p) \\ p}} \frac{\chi(a^{-1}p)}{p}$$
$$= \frac{1}{\varphi(m)} \sum_{\substack{x \in \mathbb{D}_m}} \sum_{\substack{p \text{ prime }}} \frac{\chi(a^{-1}p)}{p}$$
$$= \frac{1}{\varphi(m)} \sum_{\substack{x \in \mathbb{D}_m}} \chi(a^{-1}) \sum_{\substack{p \text{ prime }}} \frac{\chi(p)}{p}$$

Recall that
$$\log L(s,\chi) = \sum_{\substack{p \text{ prime}}} \frac{\chi(p)}{p^s} + \sum_{\substack{p \text{ prime}}} \sum_{\substack{n=2}}^{\infty} \frac{\chi(p^n)}{np^{ns}}, \text{ where } \sum_{\substack{p \text{ prime}}} \sum_{\substack{n=2}}^{\infty} \frac{\chi(p^n)}{np^{ns}} \text{ is bounded by } -\frac{\pi^2}{6} \text{ and } \frac{\pi^2}{6}.$$
 This tells us that $\frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}) \log L(1,\chi)$
$$= \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}) \left(\sum_{\substack{p \text{ prime}}} \frac{\chi(p)}{p} + \sum_{\substack{p \text{ prime}}} \sum_{\substack{n=2}}^{\infty} \frac{\chi(p^n)}{np^n} \right)$$
$$= \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \sum_{\substack{p \text{ prime}}} \frac{\chi(a^{-1}p)}{p} + \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}) \sum_{\substack{p \text{ prime}}} \sum_{\substack{n=2}}^{\infty} \frac{\chi(p^n)}{np^n}$$
$$= \sum_{\substack{p \equiv a \pmod{m}}} \frac{1}{p} + \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}) \sum_{\substack{p \text{ prime}}} \sum_{\substack{n=2}}^{\infty} \frac{\chi(p^n)}{np^n}$$
$$= \sum_{\substack{p \equiv a \pmod{m}}} \frac{1}{p} + c$$

where c is bounded since it is a finite sum of bounded terms. Thus

$$\sum_{\substack{p \equiv a \pmod{m}}} \frac{1}{p} = \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m} \chi(a^{-1}) \log L(1,\chi) - c$$
$$= \frac{1}{\varphi(m)} \log L(1,\chi_0) + \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m \setminus \{\chi_0\}} \chi(a^{-1}) \log L(1,\chi) - c,$$
and
$$\sum_{\substack{p \equiv a \pmod{m} \\ p \text{ prime}}} \frac{1}{p} \text{ would diverge to infinity unless } \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m \setminus \{\chi_0\}} \chi(a^{-1}) \log L(1,\chi)$$
is real and diverges to positive infinity.

is real and diverges to negative infinity.

Claim. $\sum_{\chi \in \mathbb{D}_m \setminus \{\chi_0\}} \chi(a^{-1}) \log L(1,\chi)$ is real and does not diverge to negative infinity.

Let $\mathbb{D}_{m,\mathbb{R}}$ be the set of nontrivial Dirichlet characters mod m that has only real values, and $\mathbb{D}_{m,\mathbb{C}}$ the set of Dirichlet characters mod m that has complex values. Then

$$\sum_{\chi \in \mathbb{D}_m \setminus \{\chi_0\}} \chi(a^{-1}) \log L(1,\chi) = \sum_{\chi \in \mathbb{D}_{m,\mathbb{R}}} \chi(a^{-1}) \log L(1,\chi) + \sum_{\chi \in \mathbb{D}_{m,\mathbb{C}}} \chi(a^{-1}) \log L(1,\chi).$$

Here, $\sum_{\chi \in \mathbb{D}_{m,\mathbb{R}}} \chi(a^{-1}) \log L(1,\chi)$ does not diverge to negative infinity since $L(1,\chi) \neq 0$ for all $\chi \in \mathbb{D}_{m,\mathbb{R}}$. For complex values, recall that if χ is a Dirichlet character, then $\overline{\chi}$ is also a Dirichlet character. So

$$\overline{\chi}(a^{-1})\log L(1,\overline{\chi}) = \overline{\chi(a^{-1})} \cdot \overline{\log L(1,\chi)} = \overline{\chi(a^{-1})\log L(1,\chi)}.$$

This tells that the values of $\chi(a^{-1}) \log L(1,\chi)$ come in conjugate pairs, and hence $\sum_{\chi \in \mathbb{D}_{m,\mathbb{C}}} \chi(a^{-1}) \log L(1,\chi)$ is real. Since $L(1,\chi) \neq 0$, $\sum_{\chi \in \mathbb{D}_{m,\mathbb{C}}} \chi(a^{-1}) \log L(1,\chi)$ does not diverge to negative infinity. Thus

not diverge to negative infinity. Thus

$$\sum_{\chi \in \mathbb{D}_m \setminus \{\chi_0\}} \chi(a^{-1}) \log L(1,\chi) = \sum_{\chi \in \mathbb{D}_{m,\mathbb{R}}} \chi(a^{-1}) \log L(1,\chi) + \sum_{\chi \in \mathbb{D}_{m,\mathbb{C}}} \chi(a^{-1}) \log L(1,\chi)$$

is real which does not diverge to negative infinity. Therefore, in the formula

$$\sum_{\substack{p \equiv a \pmod{m}}{p \text{ prime}}} \frac{1}{p} = \frac{1}{\varphi(m)} \chi_0(a^{-1}) \log L(1,\chi_0) + \frac{1}{\varphi(m)} \sum_{\chi \in \mathbb{D}_m \setminus \{\chi_0\}} \chi(a^{-1}) \log L(1,\chi) - c,$$

the right hand side is real and diverges to positive infinity, so the left hand side should also diverge to positive infinity, which completes the proof. $\hfill\square$

This gives us the Dirichlet's theorem, as desired.

Corollary : Dirichlet's Theorem on Arithmetic Progressions

If gcd(a, m) = 1, then there are infinitely many primes in the arithmetic progression a + km.

Citations

- 1. Apostol, T. M. (2006). Introduction to analytic number theory. Springer.
- 2. Bateman, P. T., & Diamond, H. G. (2009). Analytic number theory: An introductory course. World Scientific.
- 3. Davenport, H., & Montgomery, H. (2009). *Multiplicative number theory*. Springer.