Foundations of Mathematics

MATH 300 HNR, Texas A&M University

Taught by Prof. Mohamad Masri

August 20, 2024 - December 2, 2024

Contents

1	Ma 1.1 1.2 1.3 1.4	thematical Reasoning Statements	2 2 4 6 9
2	Set : 2.1 2.2 2.3	s Sets and Subsets	13 13 15 17
3	Fun 3.1 3.2 3.3	Inctions Definition and Basic Properties Surjective and Injective Functions Compositions and Invertible Functions	22 22 24 26
4	Bin 4.1 4.2	ary Operations and Relations Binary Operations	30 30 37
5	Inte 5.1 5.2 5.3 5.4	Axioms of Z	39 39 43 46 51
6	Sel 6.1 6.2	ected Topics More Group Theory	54 54 55

Mathematical Reasoning

1.1 Statements

1

Definition 1.1: Statement

A **statement** is a declarative sentence which is either true(T) or false(F).

Statements are denoted by P, Q, R, etc.

Example 1

- P: 3 + 1 = 4 is true.
- Q: 3 + 1 = 5 is false.

R: "There are 30 people in this room" is false.

Definition 1.2: Open Sentence

An **open sentence** is a declarative sentence containing one or more variables which becomes a statement by specifying values of variables.

Open sentences are denoted by P(X), P(X,Y), and $P(X_1, \dots, X_n)$.

Example 2 If P(X) : X + 1 = 2 for $X \in \mathbb{R}$, then P(1) is T, and P(X) is F if $X \neq 1$.

"For all $X \in \mathbb{R}$ " is called the *universal quantifier*, and "There exists $X \in \mathbb{R}$ " is called the *existential quantifier*.

Example 3

Let $n \in \mathbb{Z}$ and $P(n) : n^2$ is even. Then for all integers n, P(n) is T.

Proof. Suppose n is even. Then n = 2k for some $k \in \mathbb{Z}$. So

$$n^2 = (2k)^2 = 2(2k^2) = 2k'$$

where $k' = 2k^2 \in \mathbb{Z}$. Hence n^2 is even.

Example 4

Let $n \in \mathbb{Z}$, and P(n) : n = 3k for some $k \in \mathbb{Z}$. Then P: There exists an even integer n such that P(n) is T.

Example 5 Let P(X, Y) be an open sentence, and let

> $P: \forall x, \exists y \text{ such that } P(x, y)$ $Q: \exists y \text{ such that } \forall x, P(x, y)$

Here, P and Q may not be the same statements. For example, Let X and $Y \in \mathbb{R}$ and $P(X,Y) : y^3 = x$. Then

 $P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } y^3 = x$ $Q: \exists y \in \mathbb{R} \text{ such that } \forall x \in \mathbb{R}, y^3 = x.$

Here, P and Q are different statements since P is T and Q is F.

Therefore, applying quantifiers in a different order may make different statements.

Definition 1.3: Negation

If P is a statement, then the **negation** of P, $\neg P$, and read "not P", is the statement "P is false".

Example 6 If P: 3 + 1 = 4, then $\neg P: 3 + 1 \neq 4$.

The negation of an open sentence is defined similarly.

Example 7 Let $X \in \mathbb{R}$. If P(X) : X < 5, then $\neg P(X) : X \ge 5$.

The below are rules for negating quantifiers.

1. If $P: \forall X, P(X)$, then $\neg P: \exists X$ such that $\neg P(x)$.

2. If $P : \exists X$ such that $P(X), \neg P : \forall X, \neg P(X)$.

Example 8

Let P: Every polynomial is continuous everywhere. With $\mathbb{R}[x]$ the set of polynomials with real coefficients,

$$P: \forall p(x) \in \mathbb{R}[x], Q(p)$$

where Q(p): p(x) is continuous on \mathbb{R} . We have

$$\neg P : \exists p(x) \in \mathbb{R}[x]$$
 such that $\neg Q(p)$,

so $\neg P$: There exists a polynomial p(x) and a point $x_0 \in \mathbb{R}$ such that p(x) is discontinuous at x_0 .

Example 9 Let $S : \forall x, \exists y \text{ such that } P(x, y)$. Then

 $\neg S : \exists x \text{ such that } \neg (\exists y \text{ such that } P(x, y))$

 $\neg S : \exists x \text{ such that } \forall y, \ \neg P(x, y).$

Example 10 (Archimedean Principle) If $P : \forall x \in \mathbb{R}, \exists n \in \mathbb{Z} \text{ such that } n > x$. Then $\neg P : \exists x \in \mathbb{R} \text{ such that } \forall n \in \mathbb{Z}, n \leq x$. Here, P is T and $\neg P$ is false.

1.2 Compound Statements

Definition 1.4: Conjunction and Disjunction

Let P and Q be statements.

- The conjunction of P and Q, written $P \wedge Q$ and read "P and Q" is the statement 'both P and Q are true'.
- The disjunction of P and Q, written $P \lor Q$ and read "P or Q" is the statement 'P is true or Q is true'.

Remark.

 $P \wedge Q$ can fail in three ways:

- P is T and Q is F
- P if F and Q is T
- P is F and Q is F

 $P \lor Q$ can fail in one way: P is F and Q is F.

Example 11

Let $x \in \mathbb{R}$, an S(x) : |x| < 3. If we let P(x) : x > -3 and Q(x) : x < 3, then

$$S(x) \Leftrightarrow P(x) \land Q(x).$$

So $P(1) \wedge Q(1)$ is T, and $P(4) \wedge Q(4)$ is F.

Example 12

Let $x \in \mathbb{R}$, an $S(x) : |x| \ge 3$. If we let $P(x) : x \le -3$ and $Q(x) : x \ge 3$, then

 $S(x) \Leftrightarrow P(x) \lor Q(x).$

So $P(1) \lor Q(1)$ is F, and $P(4) \lor Q(4)$ is T.

Note

Expressions like $P, Q, P \land Q, P \lor Q, \neg P, \neg Q$ where P and Q are variables, representing unknown statements are called statement forms.

Here is the truth tables for $P \wedge Q$ and $P \vee Q$.

P	Q	$P \wedge Q$	$P \lor Q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

The negation of a conjunction and a disjunction will be done with the truth table.

Claim. $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q.$

Definition 1.5: Equivalent Statements and Equivalent Statement Forms

Two statements are **equivalent** if they are both true or both false. Statement forms are **equivalent** if the substitutions of statements in the forms always yields equivalent statements.

We have the following equivalences:

- $\neg(\forall x, P(x)) \Leftrightarrow \exists x \text{ such that } \neg P(x)$
- $\neg(\exists x \text{ such that } P(x)) \Leftrightarrow \forall x, \neg P(x)$
- $\neg(\forall x, P(x) \lor Q(x)) \Leftrightarrow \exists x \text{ such that } \neg(P(x) \lor Q(x)) \Leftrightarrow \exists x \text{ such that } \neg P(x) \land \neg Q(x)$
- $\neg(\forall x, P(x) \land Q(x)) \Leftrightarrow \exists x \text{ such that } \neg(P(x) \land Q(x)) \Leftrightarrow \exists x \text{ such that } \neg P(x) \lor \neg Q(x)$
- $\neg (\exists x \text{ such that } P(x) \lor Q(x)) \Leftrightarrow \forall x, \neg (P(x) \lor Q(x)) \Leftrightarrow \forall x, \neg P(x) \land \neg Q(x)$
- $\neg (\exists x \text{ such that } P(x) \land Q(x)) \Leftrightarrow \forall x, \neg (P(x) \land Q(x)) \Leftrightarrow \forall x, \neg P(x) \lor \neg Q(x)$

Example 13 Let P(x) and Q(x) be open sentences. Define

$$S: \forall x, P(x) \lor Q(x)$$

 $T: \forall x, P(x) \lor \forall x, Q(x).$

Then S is not necessarily equivalent to T. As a counterexample, let P(x) : x > 2 and Q(x) : x < 5. Then, we have

S: For all $x \in \mathbb{R}$, x > 2 or x < 5

T: For all $x \in \mathbb{R}$, x > 2 or for all $x \in \mathbb{R}$, x < 5.

Here, S is T and T is F, and $S \notin T$.

Example 14

On the other hand, consider

 $S: \exists x \text{ such that } P(x) \lor Q(x)$

 $Y : \exists x \text{ such that } P(x) \lor \exists x \text{ such that } Q(x).$

Claim. $S \Leftrightarrow T$.

Proof. We will show if S is true then T is true, and if T is true then S is true.

Suppose S is true. Then there is some x = a such that P(a) or Q(a). If P(a), then there is x such that P(x). If Q(a), then there is x such that Q(x). Hence there is x such that P(x), or there is x such that Q(x). So T is true.

By similar argument, if T is true, then S is true. Therefore, $S \Leftrightarrow T$.

Now, let S false. If T is true, then S should be true, which is a contradiction. So if S is false, then T is false. Similarly, if T is false, then S is false. This completes the proof. \Box

1.3 Implications

Definition 1.6: Implication

Let P and Q be statements. The **implication** $P \Rightarrow Q$, read "P implies Q" is the statement "If P is true, then Q is true."

P	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Remark.

If P is a false statement, then $P \Rightarrow Q$ is always true.

Let P(x) and Q(x) be open sentences, and let

$$S: \forall x, P(x) \Rightarrow Q(x).$$

Assume that P(a) is true for x = a. To show that S is true, we should show Q(a) is true (or P(a) is false).

Example 15 Let $n \in \mathbb{Z}$, and

> P(n): n is odd $Q(n): n^2 \text{ is odd.}$

Now let $S: \forall n \in \mathbb{Z}, P(n) \Rightarrow Q(n)$.

Claim. S is true.

Proof. Suppose n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Hence

 $n^{2} = (2k+1)^{2} = 2(2k^{2}+2k) + 1 = 2k'+1$

for some $k' \in \mathbb{Z}$. Therefore, n^2 is odd.

Example 16 Let $n, m \in \mathbb{Z}$, and

P(n,m):n and m is odd Q(n,m):n+m is even.

Prove $S: \forall n, m \in \mathbb{Z}, P(n,m) \Rightarrow Q(n,m)$ is true.

Proof. Let n and m be odd. Then n = 2k + 1 and m = 2k' + 1 for some k, $k' \in \mathbb{Z}$. Hence

$$n + m = 2k + 2k' + 2 = 2(k + k' + 1) = 2k$$

where $l = k + k' + 1 \in \mathbb{Z}$. So n + m is even.

How do we negate implications? Let $S: \forall x, P(x) \Rightarrow Q(x)$. Then

$$\neg S : \exists x \text{ such that } \neg (P(x) \Rightarrow Q(x)).$$

Claim. Suppose P and Q are statements. Then

$$\neg (P \Rightarrow Q) \Leftrightarrow P \land \neg Q.$$

	P	Q	$\neg Q$	$P \Rightarrow Q$	$\neg(P \Rightarrow Q)$	$P \wedge \neg Q$	
	Т	Т	F	Т	F	F	
Proof.	Т	F	Т	F	Т	Т	
	F	Т	F	Т	F	F	
	F	F	Т	Т	F	F	
	L				1		

Therefore $\neg S : \exists x \text{ such that } P(x) \land \neg Q(x).$

Definition 1.7: Counterexample

Any x such that $\neg S$ is true is called a **counterexample** to S.

Example 17

Let $n, m \in \mathbb{Z}$, and

P(n,m):n and m are perfect squares

Q(n,m): n+m is a perfect square.

Let $S: \forall n, m \in \mathbb{Z}, P(n,m) \Rightarrow Q(n,m)$. Then $\neg S: \exists n, m \in \mathbb{Z}$ such that $P(n,m) \land \neg Q(n,m)$.

Claim. S is false.

Proof. We will find a counterexample. We need $n, m \in \mathbb{Z}$ such that n and m are perfect squares and n + m is not a perfect square. If n = 4 and m = 9, since 4 + 9 = 13 is not a perfect square, this is a counterexample. Therefore, S is false.

Definition 1.8: Necessary and Sufficient Conditions '

If $P \Rightarrow Q$ is true, then P is called a **sufficient condition**: for Q to be true, it is sufficient that P be true. Here, Q is called a **necessary condition**: Q must be true for P to be true.

Claim. $P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$.

Proof. We use the truth table.

P	Q	$\neg P$	$\neg Q$	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Example 18

Let $x \in \mathbb{R}$, and

$$P: x > 5$$
$$Q: x > 0.$$

 $P \Rightarrow Q$ is true since if P is true, then x > 5 > 0, so Q is true. Hence x > 5 is sufficient for x > 0 (but not necessary). On the other hand, Q is necessary since for x > 5, we must have x > 0.

1.4 Contrapositive and Converse

We showed that $P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$.

Definition 1.9: Contrapositive

Let P and Q be statements. The statement

 $\neg Q \Rightarrow \neg P$

is called the **contrapositive** of $P \Rightarrow Q$.

Example 19

Let $x \in \mathbb{R}$, and

$$P: x+1 > 5$$
$$Q: x > 4$$

Then $P \Rightarrow Q$. We have

$$\neg Q : x \le 4$$
$$\neg P : x + 1 \le 5$$

 $\neg P: x+1 \leq 5,$ so $\neg Q \Rightarrow \neg P.$ Note that both $P \Rightarrow Q$ and $\neg Q \Rightarrow \neg P$ are true.

Example 20 Let $n \in \mathbb{Z}$. If Prove that $P \Rightarrow Q$.

Solution We prove the contrapositive $\neg Q \Rightarrow \neg P$, i.e. if n is odd then n^2 is odd. This is true by example 15. Therefore, $P \Rightarrow Q$.

 $P: n^2$ is even

Q:n is even,

Definition 1.10: Converse

Let P and Q be statements. Then the statement $Q \Rightarrow P$ is the $\mathbf{converse}$ of the statement $P \Rightarrow Q$.

Remark.

 $P \Rightarrow Q$ and $Q \Rightarrow P$ are not equivalent.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
Т	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Example 21

Let $m, n \in \mathbb{Z}$, and

P:m and n are odd

Q: m+n is even.

Then $P \Rightarrow Q$ is true, but $Q \Rightarrow P$ is false.

Definition 1.11: Biconditional

The statement $P \Leftrightarrow Q$, read "P if and only if Q", is the statement $(P \Rightarrow Q) \land (Q \Rightarrow P)$. The symbol \Leftrightarrow is called the **biconditional**.

Remark. $(P \Leftrightarrow Q) \Leftrightarrow (\neg P \Leftrightarrow \neg Q).$

One kind of proof methods is the proof by contradiction. To prove $P \Rightarrow Q$. Assume that P and $\neg Q$. If we get $\neg P$, then both P and $\neg P$ gets true, which is a contradiction. Therefore, we get $P \Rightarrow Q$.

Claim.
$$(P \Rightarrow Q) \Leftrightarrow (P \land \neg Q \Rightarrow \neg P).$$

P	Q	$\neg P$	$\neg Q$	$P \wedge \neg Q$	$P \Rightarrow Q$	$P \land \neg Q \Rightarrow \neg P$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

Theorem 1.1

Let S be a statement, and let C be a false statement. Then, $S \Leftrightarrow (\neg S \Rightarrow C)$

Proof. We use the truth table.

S	$\neg S$	C	$\neg S \Rightarrow C$
Т	F	F	Т
F	Т	F	F

Example 22

Prove S: There are no integers x and y such that $x^2 = 4y + 2$.

Proof. We use proof by contradiction. Assume $\neg S$. Then there exist integers x and y such that $x^2 = 4y + 2$. Then $x^2 = 2(2y + 1)$, which is even. Since x^2 is even, then x is even by example 20. Write x = 2k for some $k \in \mathbb{Z}$. Then

$$x^{2} = 4y + 2$$
$$4k^{2} = 4y + 2$$
$$4k^{2} - 4y = 2$$
$$k^{2} - y = \frac{1}{2},$$

which is a contradiction because LHS is an integer but RHS is not. Thus S is true. $\hfill \square$

Here, C is "there exists α and $\beta \in \mathbb{R}$ with $\alpha = \beta$, such that $\alpha \in \mathbb{Z}$ and $\alpha \notin \mathbb{Z}$.

2 Sets

2.1 Sets and Subsets

Definition 2.1: Sets and Elements

A set A is a collection of objects. The objects $a \in A$ are called elements

Some examples are \mathbb{R} : the real numbers, and \mathbb{Q} : the rational numbers.

Let S be a set and P(x) be an open sentence with variable $x \in S$. Define $A = \{x \in S \mid \P(x)\}$. Then A is called the *truth set* of P(x). Let

$$A = 4\mathbb{Z} = \{4m \mid m \in \mathbb{Z}\}.$$

If P(n): n = 4m for some $m \in \mathbb{Z}$, then A can be also expressed as

$$A = \{ n \in \mathbb{Z} \mid P(n) \}.$$

Definition 2.2: Subset

Let A and B be sets. Then A is a **subset** of B, written $A \subset B$, if $a \in A \Rightarrow a \in B$. If $A \subset B$ but $A \neq B$, then A is a **proper subset** of B.

Remark.

Here A = B means $A \subset B$ and $B \subset A$. If $A \subset B$ and $A \neq B$, then $\exists b \in B$ such that $b \notin A$. In this case we'll often write $A \subsetneq B$.

Example 1 $\mathbb{Z}^+ \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}.$

Example 2

If P(x) is an open sentence with $x \in S$, then

$$A = \{ x \in S \mid P(x) \} \subset S.$$

Example 3

Let N and M be positive integers with $N \mid M$. Prove $M\mathbb{Z} \subset N\mathbb{Z}$.

Proof. Let $n \in M\mathbb{Z}$. Then n = Mk for some $k \in \mathbb{Z}$. Since $N \mid M$, then M = lN for some $l \in \mathbb{Z}$. Hence

$$n = Mk = (lN)k = (lk)N \in N\mathbb{Z}.$$

So $M\mathbb{Z} \subset N\mathbb{Z}$.

Lemma

If $A \subset B$ and $B \subset C$ then $A \subset C$.

Proof. Let $a \in A$. Since $A \subset B$ then $a \in B$. Now, since $B \subset C$, $a \in C$. So $A \subset C$.

Recall that A = B if and only if $A \subset B \land B \subset A$. We have

 $\neg (A \subset B) \Leftrightarrow \exists a \in A \text{ such that } a \notin B.$

Here, $a \in A$ but $a \notin B$, so $A \not\subset B$. Similarly, $B \not\subset A$.

Example 4 Let $a, b \in \mathbb{R}$ and a < b. Let $A = \{f : [a, b] \to \mathbb{R} \mid f \text{ is continuous}\}B = \{f : [a, b] \to \mathbb{R} \mid f \text{ is integrable}\}$ From calculus, $A \subset B$. However $B \not\subset A$. Define $f(x) = \begin{cases} 1 & x = \frac{a+b}{2} \\ 0 & x \neq \frac{a+b}{2} \end{cases}$. Then f is discontinuous at $x_0 = \frac{a+b}{2} \in [a, b]$, but $\int_a^b f(x) \, dx = 0$. So $f \in B$ but $f \notin A$.

Definition 2.3: Complement Let *A* and *B* be sets. The **complement** of *A* in *B* is the set

 $B - A = \{ b \in B \mid b \notin A \}.$

Definition 2.4: Complement of a set

If U is a universal set, we write $U - A = \overline{A}$, called the **complement** of A.

Example 5

Let $U = \mathbb{Z}$. If $A = \mathbb{Z}^+$, then $\bar{A} = \{0, -1, -2, -3, \cdots\}$.

Definition 2.5: Empty Set -

A set with no elements is called the **empty set**, denoted \emptyset .

If $U = \mathbb{R}$ and $A = \{x \in \mathbb{R} \mid x^2 < 0\}$, then $A = \emptyset$ and $\overline{A} = \{x \in \mathbb{R} \mid x^2 \ge 0\} = U$.

Theorem 2.1

If $A, B \subset U$ with $A \subset B$, then $\overline{B} \subset \overline{A}$.

Proof. Let $x \in \overline{B} = U - B$. So $x \in U$ and $x \notin B$. We want to show that $x \in \overline{A} = U - A \Leftrightarrow x \notin A$. Suppose $x \in A$. Since $A \subset B$, $x \in B$, which contradicts $x \in \overline{B}$. So $x \notin A$.

2.2 Combining Sets

Definition 2.6: Union and Intersection

Let A and B be sets. The **union** of A and B is

$$A\cup B=\{x\mid x\in A\vee x\in B\}.$$

The **intersection** of A and B is

$$A \cap B = \{ x \mid x \in A \land x \in B \}.$$

Definition 2.7: Disjoint Sets

Two sets A and B are **disjoint** if $A \cap B = \emptyset$. Generally, if A_1, A_2, \ldots, A_n are sets, then these sets are **pairwise disjoint** if $A_i \cap A_j = \emptyset$ for all i and $j \in \{1, 2, \cdots, n\}$ with $i \neq j$.

We have the following properties:

- 1. $A \cup B = B \cup A$
- 2. $A \cap B = B \cap A$
- 3. $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. $(A \cap B) \cap C = A \cap (B \cap C)$
- 5. $A \subset A \cup B$
- $6. \ A\cap B\subset A$
- 7. $\emptyset \subset A$
- 8. $A \cup \emptyset = A$
- 9. $A \cap \emptyset = \emptyset$.

We prove $\emptyset \subset A$.

Proof. It is sufficient to show that $\forall x, x \in \emptyset \Rightarrow x \in A$. Fix $x \in U$. Define $P(x) : x \in \emptyset$ and $Q(x) : x \in A$. Then it is sufficient to show that $P(x) \Rightarrow Q(x)$. Since \emptyset is empty, $x \notin \emptyset$, so P(x) is false. Therefore, $P(x) \Rightarrow Q(x)$ is true. \Box

Next, we prove $A \cup \emptyset = A$.

Proof. Since $A \subset A$ and $\emptyset \subset A$, $A \cup \emptyset \subset A$. By (5), $A \subset A \cup \emptyset$. Therefore, $A \cup \emptyset = A$.

We now prove $A \cap \emptyset = \emptyset$.

Proof. Suppose $A \cap \emptyset \neq \emptyset$. Then there exists $x \in A \cap \emptyset$. But then $x \in \emptyset$, a contradiction. So $A \cap \emptyset = \emptyset$.

Theorem 2.2 🗖

1. $A - B = A \cap \overline{B}$

 $2. \ A \subset B \Leftrightarrow A \cup B = B.$

Proof. (1) Recall that $A - B = \{x \in A \mid x \notin B\}$. Also, $A \cap \overline{B} = \{x \in A \mid x \notin B\}$. Therefore, $A - B = A \cap \overline{B}$.

(2) Exercise.

Theorem 2.3

Let A, B, C be sets.

1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Proof. Exercise.

Theorem 2.4: De Morgan's Law

Let $A, B \in U$. Then 1. $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 2. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Proof. For some $x \in U$, let $P : x \in A$ and $Q : x \in B$. Then $\neg P : x \in \overline{A}$, $\neg Q : x \in \overline{B}$. So

(1) is true if and only if $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$

(2) is true if and only if $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$,

which is obviously true.

Definition 2.8: Cartesian Product

Let A and B be sets. The **cartesian product** of A and B is

 $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

Elements of $A \times B$ are called **ordered pairs**.

Example 6

If $A = B = \mathbb{R}$, then $A \times B = \mathbb{R} \times \mathbb{R}$ or \mathbb{R}^2 , which also is $\{(c, y) \mid x, y \in \mathbb{R}\}$. Similarly, if $A = B = \mathbb{Z}$, then $\mathbb{Z}^2 = \{(m, n) \mid m, n \in \mathbb{Z}.$

Example 7

If $A = \{1, 2, 3\}$ and $B = \{1, 2, 3\}$, then

 $A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}.$

Note that $(1,2) \neq (2,1)$. Order matters!

Note that in general, $A \times B \neq B \times A$. In $\{1,2\} \times \{3,4\}$, $(1,3) \in A \times B$ but $(3,1) \notin A \times B$.

If A and B are finite, then $|A \times B| = |A| \cdot |B|$. Here, |X| is the number of the elements in X, called the *cardinality* of X.

2.3 Collections of Sets

Definition 2.9: Power Set

Let A be a set. The **power set** of A is

 $\mathcal{P}(A) = \{ X \mid X \in A \}.$

Note that $\mathcal{P}(A) \neq \emptyset$ since $\emptyset \subset A$ and $A \subset A$. Also, if A is finite, then $|\mathcal{P}(A)| = 2^{|A|}$.

Definition 2.10: Collection of Sets

Let A_1, A_2, \ldots, A_n be subsets of U. The set

$$\mathcal{C} = \{A_1, A_2, \dots, A_n\}$$

of sets is called the **collection of sets**. We also use the notation

 $\mathcal{C} = \{A_i\}_{i \in I}$

where $I = \{1, 2, ..., n\}.$

The union of sets in \mathcal{C} is

$$\bigcup_{i \in I} A_i = \{ x \in U \mid x \in A_i \text{ for some } i \in I \}$$

and the intersection of sets in C is

$$\bigcap_{i \in I} A_i = \{ x \in U \mid x \in A_i \text{ for all } i \in I \}$$

Definition 2.11: Disjoint Union

If $A \cap B = \emptyset$ then the union of A and B is disjoint and written $A \sqcup B$.

Example 8

Let $U = \mathbb{Z}^+$. Define the collection \mathcal{C}_N by

$$\mathcal{C}_N = \{A_i\}_{i \in I_n}$$

 $C_N = \{A_i\}_{i \in I_n}$ where $A_i = \{i, i+1\}$ for some $i \in I_N = \{1, 2, \dots, N\}$. Then

$$C_1 = \{\{1, 2\}\}\$$
$$C_2 = \{\{1, 2\}, \{2, 3\}\}\$$

We have
$$\bigcap_{i \in I_N} A_i = \begin{cases} A_1 & N = 1\\ A_1 \cap A_2 = \{2\} & N = 2.\\ \emptyset & N \ge 3 \end{cases}$$

Prove that
$$\bigcup_{i \in I_N} A_i = I_{N+1} \text{ and } \bigcap_{i \in I_N} A_i = \emptyset \text{ for } N \ge 3.$$

Solution We first prove $\bigcup_{i \in I_N} A_i = I_{N+1}$.

(C) Let $x \in \bigcup_{i \in I_N} A_i$. Then $x \in A_k$ for some $k \in I_N$. Since $A_k = \{k, k+1\}$, then x = k or x = k + 1. Since $1 \le k \le N$, if x = k then $1 \le x \le N$, and if x = k + 1then $2 \leq x \leq N+1$. In either case, $x \in I_{N+1}$.

(⊃) Let $x \in I_{N+1} = I_N \sqcup \{N+!\}$. Clearly, $x \in A_x = \{x, x+1\}$. If $x \in I_N$ then $x \in \bigcup_{i=1}^{N} A_i$. If $x \in \{N+1\}$ then x = N+1 and so $x \in A_N = \{N, N+1\}$. $i \in I_N$

We now prove $\bigcap_{i \in I_N} A_i = \emptyset$ for $N \ge 3$. Let $N \ge 3$. Suppose $x \in \bigcup_{i \in I_N} A_i$. Then

 $x \in A_i$ for all i = 1, 2, ..., N. Since $N \ge 3$ then in particulat,

$$x \in A_1 \cap A_2 \cap A_3 = \emptyset,$$

a contradiction. Therefore $\bigcap_{i \in I_N} A_i = \emptyset$.

Remark.

The index sets I can be infinite sets.

Example 9

Let
$$I = \mathbb{Z}^+$$
 and $A_i = (-i, i) \subset \mathbb{R}$. Prove that $\bigcup_{i \in I} A_i = \bigcup_{i=1}^{\infty} (-i, i) = \mathbb{R}$ and $\bigcup_{i \in I} A_i = A_1$.

Solution We first prove $\bigcap_{i \in I} A_i = \mathbb{R}$.

 (\subset) Let $x \in \bigcup_{i=1}^{\infty} (-i, i)$. Then $x \in (-k, k)$ for some $k \in \mathbb{Z}^+$. Since $(-k, k) \subset \mathbb{R}$, $x \in \mathbb{R}$.

 (\supset) Let $x \in \mathbb{R}$. Show $\exists i \in \mathbb{Z}^+$ such that $x \in (-i, i)$, or equivalently, -i < x < i, or |x| < i. This is true by the Archimedean principle.

We now prove
$$\bigcup_{i \in I} A_i = A_1$$
.
(\subset) Let $x \in \bigcap_{i=1}^{\infty} (-i, i)$. Then $x \in (-i, i)$ for all $i \in \mathbb{Z}^+$. Hence $x \in (-1, 1)$.
(\supset) Let $x \in (-1, 1)$. Since $-1 < x < 1$ then $-i < x < i$ for all $i \ge 1$.

Remark.

Here we have $A_1 \subset A_2 \subset \cdots \subset A_N \subset \cdots$.

Definition 2.12: Increasing/Decreasing Chain of Sets

Suppose $C = \{A_i\}_{i \in I}$ is a collection of sets. If $A_i \subset A_j$ for all $i \leq j$, then C is an **increasing chain of sets**. If $A_j \subset A_i$ for all $i \leq j$, then C is a **decreasing chain of sets**.

If S is a collection of sets, we write $\bigcup_{A \in S} A$ for the union and $\bigcap_{A \in S} A$ for the intersection.

Definition 2.13: Partition

Let A be a set. A partition of A is a subset \mathcal{P} of $\mathcal{P}(A)$ such that

- If $X \in \mathcal{P}$ then $X \neq \emptyset$
- $\bigcup_{X \in \mathcal{P}} X = A$
- If $X, Y \in \mathcal{P}$ with $X \neq Y$ then $X \cap Y = \emptyset$.

That is, the sets $X \in \mathcal{P}$ are pairwise disjoint

Example 10

Let $A = \{1, 2\}$. Then $\mathcal{P} = \{\{1\}, \{2\}\}$ is one of the partitions. More generally, let $A = \{a \mid a \in A\}$. Let $\mathcal{P} = \{\{a\} \mid a \in A\}$ is a partition.

Lemma =

Let A_1, A_2, \ldots, A_n be finite, pairwise disjoint sets. Then

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|.$$

Theorem 2.5

Let A and B be finite sets. Then

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Proof. By the Venn diagram, notice that $A - (A \cap B)$, $A \cap B$, and $B - (A \cap B)$ form a partition for $A \cup B$. That is,

$$A \cup B = (A - (A \cap B)) \sqcup (A \cap B) \sqcup (B - (A \cap B)).$$

By the lemma above,

$$|A \cup B| = |A - (A \cap B)| + |A \cap B| + |B - (A \cap B)|$$
$$= |A - (A \cap B)| + |A \cap B| + |B - (A \cap B)| + |A \cap B| - |A \cap B|$$
$$= |A| + |B| - |A \cap B|$$

since $A = (A - (A \cap B)) \sqcup (A \cap B)$ and $B = (A - (A \cap B)) \sqcup (A \cap B)$.

Theorem 2.6: Pigeonhole Principle -

Let A_1, A_2, \ldots, A_N be finite, pairwise disjoint sets. Let $A = \bigcup_{i=1}^N A_i$. If |A| > Nr for some $r \in \mathbb{Z}^+$, then $|A_i| \ge r+1$ for some $i \in I_N$.

Proof. By the lemma, $|A| = \sum_{i=1}^{N} |A_i|$. We prove by contradiction. Assume $|A_i| \le r$ for all $i \in I_N$. Then

$$Nr < |A| = \sum_{i=1}^{N} |A_i| \le \sum_{i=1}^{N} r = Nr.$$

Since this is a contradiction, $|A_i| \ge r + 1$ for some $i \in I_N$.

Functions

3

3.1 Definition and Basic Properties

From now on, assume all sets to be nonempty.

Definition 3.1: Function

Let A and B be sets. A function $f : A \to B$ is a rile which assigns to each $a \in A$, a unique $b \in B$.

Here, A is called the domain of f, and B is called the codomain of f. We write f(a) = b for $a \in A$, if b is assigned to a.

Definition 3.2: Identity Function

Let A be a set. The **identity function** is

 $i_A: A \to A$

by $i_A(a) = a$ for all $a \in A$.

Example 1

If $a, b \in \mathbb{R}$, then $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = ax + b, x \in \mathbb{R}$ is called a *linear function*.

Definition 3.3: Image

Let $f: A \to B$ be a function. The **image** of f is

 $Im(f) = f(A) = \{f(a) \mid a \in A\}.$

More generally, if $X \subset A$, then the image of X is

 $f(X) = \{ f(x) \mid x \in X \} = \{ b \in B \mid b = f(x) \text{ for some } x \in X \}.$

Definition 3.4: Equal Functions

Two functions are **equal** if they have the same domain and codomain and f(a) = g(a) for all a in the domain.

Example 2

Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ for $x \in \mathbb{R}$. Find Im(f).

Solution We claim that $Im(f) = \mathbb{R}_{>0}$.

(C) Let $y \in \text{Im}(f)$. Then $y = x^2$ for some $x \in \mathbb{R}$. But $x^2 \ge 0$, so $y \ge 0$. Hence $y \in \mathbb{R}_{\ge 0}$.

 (\supset) Let $y \in \mathbb{R}_{>0}$. Let $x = \sqrt{y}$. Then $x^2 = (\sqrt{y})^2 = y$. Hence $y \in \text{Im}(f)$.

Therefore, $\operatorname{Im}(f) = \mathbb{R}_{\geq 0}$.

Example 3 Let $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = ax + b where $a \neq 0$ and b are constants. Find Im(f).

Solution We claim that $\text{Im}(f) = \mathbb{R}$.

 (\subset) This is immediate since the image is always a subset of the codomain.

 (\supset) Let $y \in \mathbb{R}$. Then $y \in \text{Im}(f)$ since x = (y - b)/a satisfies ax + b = y.

Theorem 3.1: Intermediate Value Theorem

Let $f : \mathbb{R} \to \mathbb{R}$. Assume f is continuous on [a, b] with a < b. If f(a) < y < f(b) then there is $x \in [a, b]$ such that f(x) = y.

Example 4

Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + 4x + 1$. Prove that $f(\mathbb{R}) = \mathbb{R}$.

Solution We only need to show that $\mathbb{R} \subset (\mathbb{R})$.

Let $y \in \mathbb{R}$. We need $x \in \mathbb{R}$ such that $y = x^3 + 4x + 1$. Note that $f(x) = x^3 + 4x + 1$ is continuous on \mathbb{R} . Note that

$$\lim_{x \to \infty} f(x) = +\infty$$
$$\lim_{x \to -\infty} f(x) = -\infty,$$

so given $y \in \mathbb{R}$, there is M > 0 such that if x > M then f(x) > y. Similarly, there is N < 0 such that if x < N then f(x) = y. Hence there exist a < b as required.

'Lemma 🗖

Let $f : A \to B$. If $X, Y \subset A$ with $X \subset Y$, then $f(X) \subset f(Y)$.

Proof. Let $a \in f(X)$. Then a = f(x) for some $x \in X$. But $X \subset Y$, so $x \in Y$. Hence $a = f(x) \in f(Y)$.

Note that this generalizes the *fiber* of a function over a point. Namely, if $b \in B$, the *fiber* of f over b is

$$f^{-1}(\{b\}) = \{a \in A \mid f(a) = b\}.$$

Definition 3.5: Inverse Image —

Let $f : A \to B$ and $W \subset B$. The **inverse image** of W with respect to f is the set

$$f^{-1}(W) = \{ a \in A \mid f(a) \in W \}.$$

Example 5

Let $A = \{0, 1, 2, 3, 4, 5\}$ and $B = \{7, 9, 11, 12, 13\}$. Define $f : A \to B$ by

```
\begin{array}{c} 0 \rightarrow 11 \\ 1 \rightarrow 9 \\ f: 2 \rightarrow 7 \\ 3 \rightarrow 9 \\ 4 \rightarrow 11 \\ 5 \rightarrow 9 \end{array}
```

Let $W_1 = \{7, 9\}, W_2 = \{11, 12\}, \text{ and } W_3 = \{11, 13\}.$ Then

 $f^{-1}(W_1) = \{1, 2, 3, 5\}$ $f^{-1}(W_2) = \{0, 4\}$ $f^{-1}(W_3) = \emptyset.$

Lemma

Let $f : A \to B$. If A is finite, then $|f(A)| \le |A|$.

Proof. Suppose |A| = N. Write $A + \{a_1, a_2, \ldots, a_N\}$. Then $f(A) = \{f(a_1), f(a_2), \ldots, f(a_n)\}$. Since f is a function, then $|f(A)| \leq N = |A|$. Since a_i can't be assigned to more than one value.

3.2 Surjective and Injective Functions

Definition 3.6: Surjective

Let $f: A \to B$ be a function. Then f is **surjective** or **onto** if f(A) = B.

Example 6

 $i_A: A \to A$ is onto, namely $i_A(A) = A$.

Example 7

Let

$$\pi_1 : A \times B \to A \ \pi_1((a, b)) = a$$
$$\pi_2 : A \times B \to B \ \pi_1((a, b)) = b.$$

Then π_1 and π_2 are onto. These are called *coordinate projections*. This is because

$$\pi_1(A \times B) = \{\pi_1((a, b)) \mid (a, b) \in A \times B\}$$
$$= \{a \mid (a, b) \in A \times B\}$$
$$= \{a \mid a \in A\}$$
$$= A,$$

and similarly for π_2 .

Example 8 Let $f : \mathbb{Z} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} n+2 & n \in E\\ 2n+1 & n \in O \end{cases}$$

with E the even integers and O the odd integers. Show that f is not onto.

Solution We need to show that $f(\mathbb{Z}) \neq \mathbb{Z}$.

Claim. $5 \notin f(\mathbb{Z})$.

Suppose $5 \in f(\mathbb{Z})$. Then 5 = f(n) for some $n \in \mathbb{Z}$. If $n \in E$ then n + 2 = 5 gives n = 3, but $3 \notin E$. If $n \in O$ then 2n + 1 gives n = 2, but $2 \notin O$. Therefore $5 \notin f(\mathbb{Z})$.

Definition 3.7: Injective

Let $f : A \to B$ be a function. Then f is **injective** or **one-to-one** if whenever $a_1, a_2 \in A$ with $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. Equivalently, if $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$ then $a_1 = a_2$.

Example 9

Define f as in the previous example. Show that f is injective.

Solution Let $n_1, n_2 \in \mathbb{Z}$ and suppose $f(n_1) = f(n_2)$. If $n_1, n_2 \in E$ then $n_1 + 2 = n_2 + 2 \Rightarrow n_1 = n_2$.

If $n_1, n_2 \in O$ then $2n_1 + 1 = 2n_2 + 1 \Rightarrow n_1 = n_2$.

If $n_1 \in E$ and $n_2 \in O$, then $n_1 \neq n_2$. Now, $f(n_1) = n_1 + 2$ and $f(n_2) = 2n_2 + 1$, so $f(n_1) = f(n_2)$. Hence f is one-to-one.

Definition 3.8: Bijective

Let $f:A\to B$ be a function. If f is both onto and one-to-one, then f is a bijection.

Example 10

Let $f(x) = x^3$ for $x \in \mathbb{R}$. Then By IVT, $f(\mathbb{R}) = \mathbb{R}$. Since $f'(x) = 3x^2 > 0$ for $x \neq 0$, f is strictly increasing. Let x_1 and $x_2 \in \mathbb{R}$ with $x_1 \neq x_2$. WLOG suppose $x_1 < x_2$. Then $f(x_1) < f(x_2)$, which gives $f(x_1) \neq f(x_2)$.

Definition 3.9: Permutation

Let $f : A \to A$ be a function. If f is a bijection, then f is called a **permutation** of A.

Let $S_A + \{f : A \to f \mid f \text{ is a permutation}\}$. Note that $i_A \in S_A$, so $S_A \neq \emptyset$. If |A| = N then $|S_A| = N!$.

3.3 Compositions and Invertible Functions

Definition 3.10: F(A, B)

Let A and B be sets. Write F(A, B) as {functions $f : A \to B$ }. If A = B, write F(A).

Definition 3.11: Composition

Let A, B, and C be sets. If $f \in F(A, B)$ and $g \in F(B, C)$. Then the **composition** $g \circ f \in F(A, C)$ is the function

 $(g \circ f)(a) = g(f(a))$ for $a \in A$.

Example 11 Let $f, g \in F(\mathbb{R})$ be $f(x) = x^2$ and g(x) = x + 1. Then $(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 1$

and

$$(f \circ g)(x) = f(g(x)) = f(x+1) = x^2 + 2x + 1.$$

Remark.

 $g \circ f \neq f \circ g$ in general. That is, function composition does not commute.

Theorem 3.2 Let $f \in F(A, B)$. Then $f \circ i_A = f$ and $i_B \cdot f = f$.

Proof. Note that $f \circ i_A : A \to B$ and $i_B \circ f : A \to B$. We have

$$(f \circ i_A)(a) = f(i_A(a)) = f(a) \text{ for all } a \in A$$
$$(i_B \circ f)(a) = i_B(f(a)) = f(a) \text{ for all } a \in A. \quad \Box$$

Theorem 3.3

Let $f \in F(A, B)$ and $g \in F(B, C)$.

1. If f and g are onto then $g \circ f$ is onto.

2. If f and g are one-to-one then $g \circ f$ is one-to-one.

3. If f and g are bijective then $g \circ f$ is bijective.

Proof. (1) Recall that $g \circ f \in F(A, C)$. We have

$$(g \circ f)(A) = g(f(A)) = g(B) = C,$$

so $g \circ f$ is onto.

(2) Suppose $a_1, a_2 \in A$ and $(g \circ f)(a_1) = (g \circ f)(a_2)$. Then

$$g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$$

since g is one-to-one. Then, $a_1 = a_2$ since f is one-to-one. Therefore $g \circ f$ is one-to-one.

(3) Follows immediately from (1) and (2).

Corollary

Let $f, g \in S(A)$. Then $g \circ f \in S(A)$.

Lemma

he function composition is associative. Let $f \in F(A, B)$, $g \in F(B, C)$, and $h \in F(C, D)$. Then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. We have

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a)))$$
$$((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))).$$

Definition 3.12: Invertible Functions

Let $f \in F(A, B)$. Then f is **invertible** if there exists $g \in F(B, A)$ such that $f \circ g = i_B$ and $g \circ f = i_A$. If g exists, it is called the **inverse** of f and denoted f^{-1} .

Remark.

If g exists, it is unique.

Proof. Suppose g and h are inverses of f. Then

$$f \circ g = i_B, \ g \circ f = i_A$$
$$f \circ h = i_B, \ h \circ f = i_A$$

Then

$$g = g \circ i_B$$

= $g \circ (f \circ h)$
= $(g \circ f) \circ h$
= $i_A \circ h$
= h .

Example 12

 $i_A \in S(A)$ is invertible with $i_A^{-1} = i_A$.

Proof. For $a \in A$, we have

$$(i_A \circ i_A)(a) = i_A(i_A(a)) = i_A(a),$$

so $i_A^{-1} = i_A$.

Example 13

Let $f \in F(\mathbb{R})$ with $f(x) = x^2$ for $x \in \mathbb{R}$. Then f is not invertible. If we let $g = f|_{\mathbb{R} \ge 0} \in F(\mathbb{R} \ge 0)$. Then $g^{-1}(x) = \sqrt{x}$ for $x \in \mathbb{R} \ge 0$. We can prove that $g \circ g^{-1} = i_{R \ge 0}(x)$, and the other way around.

Theorem 3.4 Let $f \in F(A, B)$. Then f is invertible if and only if f is a bijection.

Proof. (\Rightarrow) Suppose f^{-1} exists.

(Injective) Let $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$. Since f^{-1} exists,

$$f^{-1}(f(a_1)) = f^{-1}(f(a_2))$$
$$(f^{-1} \circ f)(a_1) = (f^{-1} \circ f)(a_2)$$
$$i_A(a_1) = i_A(a_2)$$
$$a_1 = a_2.$$

(Surjective) Let $b \in B$, Define $a = f^{-1}(b) \in A$. Then

$$f(a) = f(f^{-1}(b)) = (f \circ f^{-1})(b) = i_B(b) = b.$$

(\Leftarrow) Suppose f is a bijection. We must define a function $g \in F(B, A)$ such that $f \circ g = i_B$ and $g \circ f = i_A$. Let $b \in B$. Since f is onto, there is $a \in A$ such that f(a) = b. Since f is injective, a is unique. Define $g : B \to A$ by

 $b \mapsto$ the unique $a \in A$ such that f(a) = b

Then

$$(f \circ g)(b) = f(g(b)) = f(a) = b = i_B(b)$$
$$(g \circ f)(a) = g(f(a)) = g(b) = a = i_A(a). \quad \Box$$

Binary Operations and Relations

4.1 Binary Operations

Definition 4.1: Binary Operation

A binary operation on a set A is a function $f : A \times A \to A$ that maps $(a_1, a_2) \mapsto F(a_1, a_2) \in A$.

Example 1

4

In \mathbb{Z} , \mathbb{Q} , and \mathbb{R} , + and \cdot are binary operations defined by

$$\begin{aligned} +: \mathbb{Z} \times \mathbb{Z} &\to \mathbb{Z} \\ (m, n) &\mapsto m + n \\ \cdot: \mathbb{Z} \times \mathbb{Z} &\to \mathbb{Z} \\ (m, n) &\mapsto m \cdot n \end{aligned}$$

and similarly for \mathbb{Q} and \mathbb{R} .

Remark.

Division is not a binary operation on \mathbb{Z} . For example, $1, 2 \in \mathbb{Z}$ but $1/2 \notin \mathbb{Z}$. Division if a binary operation on $\mathbb{Q} - \{0\}$ and $\mathbb{R} - \{0\}$.

Example 2

Let A be a set. Then

$$\circ: F(A) \times F(A) \to F(A)$$
$$(f,g) \qquad \mapsto f \circ g$$

So function composition is a binary operation.

Example 3

In \mathbb{R} ,

$$\begin{aligned} +: F(\mathbb{R}) \times F(\mathbb{R}) &\to F(\mathbb{R}) \\ (f,g) &\mapsto f+g \\ \cdot: F(\mathbb{R}) \times F(\mathbb{R}) &\to F(\mathbb{R}) \\ (f,g) &\mapsto f \cdot g \end{aligned}$$

are binary operations. Here, (f+g)(a) = f(a)+g(a), and $(f \cdot g)(a) = f(a) \cdot g(a)$ for $a \in \mathbb{R}$.

From now, we denote a binary operation on A by

 $*: A \times A \to A$

that maps $(a_1, a_2) \mapsto a_1 * a_2$.

Definition 4.2: Associativity

A binary operation * on A is **associative** if for all a, b, and $c \in A$,

 $a \ast (b \ast c) = (a \ast b) \ast c.$

Definition 4.3: Commutativity

A binary operation * on A is **commutative** if for all a, and $b \in A$,

a * b = b * a.

Example 4

+ and \cdot are associative and commutative on \mathbb{R} , \mathbb{Q} , and \mathbb{Z} .

Example 5

Define $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by a * b = 2a + b. Then

```
(2 * 3) * 4 = 7 * 4
= 18
2 * (3 * 4) = 2 * 10
= 14,
```

so \ast is not associative. Also, since

```
2 * 3 = 7
3 * 2 = 8,
```

* is not commutative.

We will denote (A, *) as a binary operation * on a set A.

Definition 4.4: Identity -

Let * be a binary operation on A. Then $e \in A$ is an **identity** for * if a * e = e * a = a for all $a \in A$.

Example 6

Some examples are (A, *, e), $(\mathbb{R}, +, 0)$, $(\mathbb{R}, \cdot, 1)$, $(F(A), \circ, i_A)$.

Example 7

Prove that $(\mathbb{Z}, *: (a, b) \mapsto 2a + b)$ does not have an identity.

Solution Suppose $e \in \mathbb{Z}$ exists for *. Then

$$1 = e * 1 = 2e + 1 \Rightarrow e = 0.$$

However,

 $1 * 0 = 2 \neq 1,$

so 0 cannot be the identity. Therefore, the identity doesn't exist for $(\mathbb{Z}, *)$

Example 8 Let $A \neq \emptyset$. In $(\mathcal{P}(A), * : (X, Y) \mapsto X \cap Y)$, the identity is A since

 $X * e = X \cap A = X = A \cap X = e * X.$

Theorem 4.1: Uniqueness

If e is the identity for *, then e is unique.

Proof. Suppose e and e' are identities for *. Then

e * e' = ee * e' = e',

so e = e'.

Definition 4.5: Invertible

Suppose we have (A, *, e). Then $a \in A$ is **invertible** with respect to * if there exists $b \in A$ such that a * b = b * a = e. If b exists, we say that b is an **inverse** of a with respect to *.

Example 9

In $(\mathbb{Z}, +, 0)$, the inverse of n is -n.

Theorem 4.2

Inverses are unique.

If b exists then we denote it by a^{-1} .

Example 10

The only invertible elements in $(\mathbb{Z}, \cdot, 1)$ are ± 1 .

Example 11

In $(F(A), \circ, i_A)$, only those $f \in S_A \subset F(A)$ have inverses with respect to \circ .

Example 12

In $(\mathcal{P}(A), * : (X, Y) \to X \cap Y, e = A)$, note that $A^{-1} = A$ since $A \cap A = A$. Suppose $X \subset A, X \neq A$. Then $X \cap Y \neq A$ for all $Y \in \mathcal{P}(A)$ since $X \cap Y \subset X \neq A$. So X is not invertible.

Example 13

Let
$$A, B \in M_2(\mathbb{R}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha, \beta, \gamma, \delta \in \mathbb{R} \right\}$$
. Then
$$A \cdot B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

and

$$A \cdot I = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Definition 4.6: Closure

In (A, *), let $X \subset A$. Then X is **closed** with respect to * if for all $x, y \in X$, $x * y \in X$.

Example 14

Consider $\left(S, +, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\right)$ with $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}, a = 0 \right\}$. Then S is closed under +.

Example 15

Let $a, b \in \mathbb{R}$ with $b \neq 0$. Define $\ell_{a,b} = \{(x, ax + b) \mid x \in \mathbb{R}\} \subset \mathbb{R}^2$. Then $\ell_{a,b}$ is the graph of the line y = ax + b. We claim that $+|_{\ell a,b} : \ell_{a,b} \times \ell_{a,b} \to \mathbb{R}^2$ is not closed. Since $(x_1, ax_1 + b) + (x_2, ax_2 + b) = (x_1 + x_2, a(x_1 + x_2) + 2b)$, if $\ell_{a,b}$ is closed, then 2b = b, which gives b = 0, a contradiction. Therefore $\ell_{a,b}$ is not closed under addition.

Definition 4.7: Group

Let G be a nonempty set. If there is a binary operation * on G such that

- 1. * is associative
- 2. $\exists e \in G$ with respect to *
- 3. Every $g \in G$ has an inverse g^{-1} with respect to *

then (G, *, e) is called a **group**.

Example 16

 $(S(A), \circ, i_A)$ is a group since

- 1. Function composition is associative
- 2. i_A is the identity
- 3. Every function has an inverse (since it is a bijection).

Definition 4.8: Relation

A relation R on a set A is a subset $R \subset A \times A$. If $(a, b) \in R$, we write aRb.

Example 17

< is a relation on \mathbb{R} where $R = \{(a, b) \in \mathbb{R} \mid a < b\} \subset \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$. We have 1R2 but not 2R1.

Example 18

Equality is a relation.

Definition 4.9: Reflexive, Symmetric, Transitive, Antisymmetric Relations

Let R be a relation on a set.

- 1. *R* is **reflexive** if aRa for all $a \in A$.
- 2. *R* is symmetric if $aRb \Rightarrow bRa$ for all $a, b \in A$.
- 3. *R* is **transitive** if *aRb* and *bRc* \Rightarrow *aRc* for all *a*, *b*, *c* \in *A*.
- 4. *R* is **antisymmetric** if for all $a, b \in A$, aRb and $bRa \Rightarrow a = b$.

Example 19

Let $N \in \mathbb{Z}^+$ be fixed. Define R on \mathbb{Z} by

 $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b = Na\} \subset \mathbb{Z} \times \mathbb{Z}$

Then $(a, a) \in R$ if and only if a = Na, so R is not transitive.

Suppose $(a, b) \in R$. Then b = Na. This does not imply a = Nb, so R is not transitive.

If b + Na and c = Nb, $c = N^2 a$, so R is not transitive.

If b = Na and a = Nb, then $b = N^2b$, so R is not antisymmetric.

Definition 4.10: Equivalence Relation -

Let R be a relation on a set. Then R is an **equivalence relation** if R is reflexive, symmetric, and transitive.

Example 20

Equality is an equivalence relation.

Definition 4.11: Modulo N

Let $N \in \mathbb{Z}^+$ Define a relation on \mathbb{Z} by

$$R_N = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a - b = Nk \text{ for some } k \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$$

Then $aR_N b$ if $N \mid a - b$. We write $a \equiv b \pmod{N}$.

Theorem 4.3

 R_N is an equivalence relation on \mathbb{Z} .

Proof. (Reflexive) We have $a \equiv a \pmod{N} \Leftrightarrow N \mid a - a \Leftrightarrow N \mid 0$, so R_N is reflexive.

(Symmetric) Suppose $a \equiv b \pmod{N}$. Then $N \mid a - b \Leftrightarrow a - b = Nk$ for some $k \in \mathbb{Z}$. Since b - a = N(-k), $b \equiv a \pmod{N}$, so R_N is symmetric.

(Transitive) Suppose $a \equiv b \pmod{N}$ and $b \equiv c \pmod{N}$. Then $a - b = Nk_1$ and $b - c = Nk_2$ for some $k_1, k_2 \in \mathbb{Z}$. Then

$$a - c = a - b + b - c = Nk_1 + Nk_2 = N(k_1 + k_2)$$

so $a \equiv c \pmod{N}$ and R_N is transitive.

If R is an equivalence relation on A, we write aRb as $a \sim b$.

Definition 4.12: Equivalence Class

Let R be an equivalence relation on A, and let $a \in A$. The **equivalence** class of a is

$$[a] = \{x \in A \mid x \sim a\}$$

Elements in [a] are said to be equivalent.

Example 21

If \sim on A is = then $[a] = \{a\}$.

Example 22

If \sim on \mathbb{Z} is $a \sim b$ if |a| = |b|. Here, if $a \neq 0$, then $[a] = \{-a, a\}$, and if a = 0 then $[a] = \{0\}$.

Example 23

Fix $N \in \mathbb{Z}^+$. If ~ is R_N (called congruence modulo N and $a \in \mathbb{Z}$, then

$$[a]_N = \{x \in \mathbb{Z} \mid x \sim a\}$$

$$= \{x \in \mathbb{Z} \mid x \equiv a \pmod{N}\}$$

$$= \{x \in \mathbb{Z} \mid N \mid x - a\}$$

$$= \{x \in \mathbb{Z} \mid x - a = Nk \text{ for some } k \in \mathbb{Z}\}$$

$$= \{x \in \mathbb{Z} \mid x = a + Nk \text{ for some } k \in \mathbb{Z}\}$$

$$= \{a + Nk \mid k \in \mathbb{Z}\}.$$

Example 24

Let N = 2. Then $[0]_2 = \{2k \mid k \in \mathbb{Z}\} = \mathbb{E}$, and $[1]_2 = \{1 + 2k \mid k \in \mathbb{Z}\} = \mathbb{O}$. Claim. $\mathbb{Z} = [0]_2 \sqcup [1]_2$. Let R be an equivalence relation on A. Define

$$A/R = \{ [a]_R \mid a \in A \} \subset \mathcal{P}(A).$$

Theorem 4.4

A/R is a partition of A.

Proof. If $[a]_R \in A/R$. Then $[a]_R \neq \emptyset$ since R is an equivalence relation implies $a \sim a$ so $a \in [a]_R$.

Note that

$$\bigcup_{X \in A/R} X = \bigcup_{a \in A} [a]_R.$$

We claim this is equal to A.

(⊂) Let
$$x \in \bigcup_{a \in A} [a]_R$$
. Then $x \in [a]_R$ for some $a \in A$. But $[a]_R \subset A$, so $x \in A$.

 (\supset) Let $x \in A$. Then $x \in [x]_R$, so $x \in \bigcup_{a \in A} [a]_R$, so $A \subset \bigcup_{a \in A} [a]_R$.

Now, we must show that the sets in A/R are pairwise disjoint, i.e. if $[a]_R$, $[b]_R \in A/R$ with $[a]_R \neq [b]_R$, then $[a]_R \cap [b]_R = \emptyset$. We prove the contrapositive. Suppose $[a]_R \cap [b]_R \neq \emptyset$. Let $x \in [a]_R \cap [b]_R$. Then $x \sim a$ and $x \sim b$. Since \sim is symmetric, $a \sim x$. Since \sim is transitive, $a \sim x$ and $x \sim b$ implies $a \sim b$. This gives $a \in [b]_R$, and also $b \in [a]_R$ since $b \sim a$ by symmetry.

Claim. $[a]_R = [b]_R$.

 (\subset) Let $x \in [a]_R$. Then $x \sim a$. Since $a \sim b$, then $x \sim b$. So $x \in [b]_R$.

 (\supset) Let $x \in [b]_R$. Then $x \sim b$. Since $b \sim a$, then $x \sim a$. So $x \in [a]_R$.

Therefore, the sets in A/R are pairwise disjoint, so A/R is a partition of A.

4.2 Partial and Linear Orderings

Theorem 4.5

Let \mathscr{P} be a partition of A. Define a relation R on A by aRb if $a, b \in X$ for some $X \in \mathscr{P}(\subset \mathcal{P}(A))$. Then R is an equivalence relation on A.

Proof. (Reflexive) Let $a \in A$. Since \mathscr{P} is a partition of A, then $a \in X$ for some $X \in \mathscr{P}$.

(Symmetric) Let $a, b \in A$ suppose aRb. Then $a, b \in X$ for some $X \in \mathscr{P}$ hence $b, a \in X$, so bRa.

(Transitive) Let $a, b, c \in A$ and suppose aRb and bRc. Then $a, b \in X$ and $b, c \in Y$

for some $X, Y \in \mathcal{P}$. Since \mathcal{P} is a partition if $X \neq Y$, then $X \cap Y = \emptyset$. However, since $b \in X \cap Y$, then we must have X = Y. Since $a \in X$ and $c \in Y = X$, then a, $c \in X$, so aRc.

Definition 4.13: Linear Ordering

Let (A, R) be a partially ordered set. Then R is a **linear ordering** on A if for all $a, b \in A$, either aRb or bRa. Then A is a **linearly ordered** set.

Example 25

 (R, \leq) is linearly ordered. $(\mathcal{P}(A), \subset)$ is not linearly ordered unless |A| = 1.

5

Integers

5.1 Axioms of $\mathbb Z$

In $(\mathbb{Z}, +, \cdot)$ and $x, y, z \in \mathbb{Z}$,

- 1. (x + y) + z = x + (y + z)
- 2. x + y = y + x
- 3. 0 is the additive identity
- 4. $x^{-1} = -x$ for +
- 5. (xy)z = x(yz)
- 6. xy = yx
- 7. $1 \cdot x = x$
- 8. x(y+z) = xy + xz
- 9. \mathbb{Z}^+ is closed in \mathbb{Z} with respect to + and \cdot .
- 10. (Trichotomy Law) For each $x \in \mathbb{Z}$, exactly one of the following is true: $x \in \mathbb{Z}^+, -x \in \mathbb{Z}^+, x = 0.$

We now have the following propositions.

Lemma 📃

1. $a + b = a + c \Rightarrow b = c$ 2. $a \cdot 0 = 0 \cdot a = 0$ 3. (-a)b = a(-b) = -(ab)4. -(-a) = a

Proof. (1) Suppose a + b = a + c. Then

$$a + (a + b) = -a + (a + c)$$

$$\Rightarrow_{A_1} (-a + a) + b = (-a + a) + c$$

$$\Rightarrow_{A_4} 0 + b = 0 + c$$

$$\Rightarrow_{A_3} b = c.$$

(2) We have 0 + 0 = 0 by A_3 . Then

 $0 + a0 =_{A_3} a0 =_{A_3} a(0+0) =_{A_8} a0 + a0.$

so 0 = a0 by (1). (3)

$$ab + (-a) + b =_{A_8} (a + (-a))b$$
$$=_{A_4} 0b$$
$$=_{P_2} 0,$$

This shows that (-a)b is an additive inverse of ab. By uniqueness of inverses, (-a)b = -(ab).

(4) Since $a + (-a) =_{A_4} 0$, a is the additive inverse of -a. By the uniqueness of inverses, -(-a) = a.

Example 1

Prove the following propositions:

1.
$$(-a)(-b) = ab$$

2. $a)(b-c) = ab - ac$
3. $(-1)a = -a$
4. $(-1)(-1) = 1$.

Example 2

Prove the following proposition: if $x \in \mathbb{Z}$ with $x \neq 0$ then $x^2 \in \mathbb{Z}^+$.

Proof. Since $x \neq 0$, by A10 either $x \in \mathbb{Z}^+$ or $-x \in \mathbb{Z}^+$. If $x \in \mathbb{Z}^+$, then by A9, $x^2 = x \cdot x \in \mathbb{Z}^+$. If $-x \in \mathbb{Z}^+$, then $x^2 = x \cdot x = P_5(-x)(-x) \in \mathbb{Z}^+$ by A9.

Definition 5.1: Inequality

Let $x, y \in \mathbb{Z}$. We say x < y if $y - x \in \mathbb{Z}^+$.

Let $a, b, c \in \mathbb{Z}$. 1. Exactly one of the following holds: a < b, b < a, a = b2. $a > 0 \Rightarrow -a < 0, a < 0 \Rightarrow -a > 0$ 3. a > 0 and $b > 0 \Rightarrow a + b > 0$ and ab > 04. a > 0 and $b < 0 \Rightarrow ab < 0$ 5. a < 0 and $b < 0 \Rightarrow ab > 0$ 6. a < b and $b < c \Rightarrow a < c$ 7. $a < b \Rightarrow a + c < b + c$ 8. a < b and $c < 0 \Rightarrow ac > bc$.

Proof. Exercise.

A11 (Well-ordering principle): Every nonempty subset of \mathbb{Z}^+ has a minimal element; if $S \subset \mathbb{Z}^+$ with $S \neq \emptyset$, then $\exists x_0 \in S$ such that $x_0 \leq x$ for all $x \in S$.

Example 3

Prove that there is no integer $x \in \mathbb{Z}$ with 0 < x < 1.

Proof. Let $S = \{n \in \mathbb{Z} \mid 0 < n < 1\}$. Note that $S \subset \mathbb{Z}^+$. Suppose $S \neq \emptyset$. By WOP, there exists $x_0 \in S$ such that $x_0 \leq n$ for all $n \in S$. Since $x_0 \in S$ then $x_0 < 1$, hence $x_0 - 1 < 0$. By Q4, since $x_0 > 0$ and $x_0 - 1 < 0$, $x_0^2 - x_0 < 0$, which gives $x_0^2 < x_0$. Since $x_0 < 1$, by Q6, $x_0^2 < 1$. Also, $x_0^2 \in \mathbb{Z}^+$. This contradicts WOP, so $S = \emptyset$.

" Corollary "

1 is the minimal element of \mathbb{Z}^+ .

Corollary '

Let $\mathbb{Z}^{\times} = \{n \in \mathbb{Z} \mid n \text{ has a multiplicative inverse in } \mathbb{Z}\}$. This is called the set of units of \mathbb{Z} . Then $\mathbb{Z}^{\times} = \{\pm 1\}$.

Proof. Clearly $\{\pm 1\} \subset \mathbb{Z}^{\times}$ since $1 \cdot 1 = 1$ and $(-1) \cdot (-1) = 1$. Suppose $a \in \mathbb{Z}^{\times}$. Then there exists $x \in \mathbb{Z}$ such that ax = 1. Since ax = 1, then A10 gives $a \in \mathbb{Z}^+$ or $-a \in \mathbb{Z}^+$. Now, suppose $a \in \mathbb{Z}^+$ and $a \neq 1$. Then a > 1 by minimality of $1 \in \mathbb{Z}^+$, a > 1. Also, since $ax = 1 \in \mathbb{Z}^+$ then $x \in \mathbb{Z}^+$ (so $x \ge 1$). We now get $1 = ax > 1x = x \ge 1$, which is a contradiction. So a = 1.

A similar argument works if $-a \in \mathbb{Z}^+$.

We have considered the group $(\mathbb{Z}, +, 0)$ until now. But what if the group was $(\mathbb{Z}_N, +, [0])$? We first need to show that the group is well-defined.

Lemma

 $\cdot : \mathbb{Z}_N \times \mathbb{Z}_N \to \mathbb{Z}_N$ defined by $[a] \cdot [b] := [a \cdot b]$ is well defined.

Solution Let [a] = [a'] and [b] = [b']. Then $a \equiv a' \pmod{N}$ and $b \equiv b' \pmod{N}$, so [ab] = [a'b'] since $ab \equiv a'b' \pmod{N}$.

Define $\mathbb{Z}_N^{\times} = \{[a] \in \mathbb{Z}_N \mid [a] \text{ is invertible with respect to } \cdot\}$. For example, let N = 4. We construct the multiplication table for \mathbb{Z}_4 .

•	0	1	2	3
0	0	0	0	0
$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	$\begin{array}{c} 0 \\ 0 \end{array}$	1	2	3
2		2	0	2
3	0	3	2	1

So $\mathbb{Z}_4^{\times} = \{1, 3\}$. For \mathbb{Z}_3 ,

•	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

For N = 3, every integer has a multiplicative inverse.

Remark.

0 is never in \mathbb{Z}_N^{\times} for any N.

For \mathbb{Z}_5 , $\mathbb{Z}_5^{\times} = \{1, 2, 3, 4\}$. This can be generalized to primes.

Theorem 5.1

If p is a prime, every nonzero element has a multiplicative inverse in \mathbb{Z}_p . That is, $\mathbb{Z}_p^{\times} = \{1, 2, \dots, p-1\}.$

5.2 Mathematical Induction

• Theorem 5.2: First Principle of Mathematical Induction

Let P(n) be a statement about $n \in \mathbb{Z}^+$. Suppose that

- 1. P(1) is true
- 2. If $k \in \mathbb{Z}^+$ such that P(k) is true, then P(k+1) is true

Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof. Let $S = \{n \in \mathbb{Z}^+ \mid P(n) \text{ is false}\}.$

Claim.
$$S = \emptyset$$

Suppose $S \neq \emptyset$. Since $S \subset \mathbb{Z}^+$, by WOP, S has a minimal element $k_0 \in S$. Now by (1), we know that $1 \notin S$, so $k_0 > 1$. Hence $k_0 - 1 \in \mathbb{Z}^+$. Further, $k_0 - 1 \notin S$ since $k_0 - 1 < k_0$. Hence $P(k_0 - 1)$ is true. Then by (2), since $P(k_0 - 1)$ is true, $P(k_0)$ is also true. This is a contradiction to $k_0 \notin S$, so $S = \emptyset$.

Example 4
Show that
$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

Solution We use induction. We have

$$P(1) = 1 = \frac{2}{2} = \frac{1(1+1)}{2}.$$

so P(1) is true. Now, suppose P(k) is true. Then $1 + 2 + \dots + k = \frac{k(k+1)}{2}$. We have

$$1 + 2 + \dots + k + k + 1 = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{(k+1)(k+2)}{2}$$

so P(k+1) is true. This completes the proof.

Theorem 5.3: Second Principle of Mathematical Induction
Let n ∈ Z and P(n) be a statement. Suppose there is n₀ ∈ Z such that
1. P(n₀) is true
2. If k ≥ n₀ is an integer for which P(k) is true then P(k + 1) is true,

then P(n) is true for all $n \ge n_0$.

Proof. Exercise.

Example 5

If $n \in \mathbb{Z}$ with $n \ge 3$ then $n^2 > 2n + 1$.

Solution Let $n \in \mathbb{Z}^+$ and $P(n) : n^2 > 2n + 1$. Note that P(3) is true since 9 > 7. Suppose $k \in \mathbb{Z}$ with $k \ge 3$ such that P(k) is true. Thus $k^2 > 2k + 1$. Now, we show that P(k+1) is true, namely $(k+1)^2 > 2(k+1) + 1$. For $k \ge 3$, we have

$$(k+1)^2 = k^2 + 2k + 1$$

> $4k + 2$
> $2k + 3$
= $2(k+1) + 1$.

Theorem 5.4: Second Principle of Mathematical Induction

Let $n \in \mathbb{Z}^+$ and P(n) be a statement. Suppose

- 1. P(1) is true
- 2. If $k \in \mathbb{Z}^+$ and P(i) is true for all $i \in \mathbb{Z}^+$ with $i \leq k$ then P(k+1) is true.

Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof. Exercise.

Example 6

Let $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ with f(1) = 1, f(2) = 5, and f(n+1) = f(n) + 2f(n-1)for all $n \ge 2$. Let $P(n) : f(n) = 2^n + (-1)^n$ for all $n \in \mathbb{Z}^+$. Prove that P(n)is true for all $n \in \mathbb{Z}^+$.

Solution Note that P(1) and P(2) is true. Suppose $k \ge 3$ is a positive integer such that P(i) is true for all $i \le k$. By assumption, P(k-1) and P(k) are true. Then

$$f(k-1) = 2^{k-1} + (-1)^{k-1}$$
$$f(k) = 2^k + (-1)^k.$$

We will show that P(k+1) is true, namely $f(k+1) = 2^{k+1} + (-1)^{k+1}$. We have

$$f(k+1) = f(k) + 2f(k-1)$$

= $(2^{k} + (-1)^{k}) + 2(2^{k-1} + (-1)^{k-1})$
= $2^{k} + (-1)^{k} + 2^{k} + 2(-1)^{k-1}$
= $2^{k+1} - (-1)^{k-1} + 2(-1)^{k+1}$
= $2^{k+1} + (-1)^{k-1}$
= $2^{k+1} + (-1)^{k+1}$

Theorem 5.5: First Principle of Mathematical Induction, reformed
Let S ⊂ Z⁺. Suppose
1 1 ∈ S
2. If k ∈ Z⁺ with k ∈ S then k + 1 ∈ S
then S = Z⁺.

Definition 5.2: Binomial Coefficient

Let $n \in \mathbb{Z}^+$ and $r \in \mathbb{Z}$ satisfy $0 \le r \le n$. The **binomial coefficient** is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Remark.

 $\binom{n}{r}$ is the number of ways to choose r objects from a collection of n objects.

Theorem 5.6

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Proof. Exercise.

Corollary $\sum_{k=1}^{n} \binom{n}{k} = 2^{n}.$

Proof. Let a = b = 1.

This implies if |A| = n then $|\mathcal{P}(A)| = 2^n$.

5.3 Division Algorithm

Theorem 5.7: Division Algorithm

Let $a, b \in \mathbb{Z}$ with b > 0. Then there exists unique integers q and r such that a = bq + r with $0 \le r < b$.

Proof. Let $S = \{n \in \mathbb{Z} \mid n = a - bx \text{ for some } x \in \mathbb{Z}\}$ and $S_0 = \{n \in S \mid n \ge 0\}$.

Claim. $S \neq \emptyset$.

Note that $a = a - b \cdot 0$ so $a \in S$. If $a \ge 0$ then $a \in S_0$. So, suppose a < 0. Since $a - ba \in S$ and $a - ba = a(1 - b) \ge 0$, then $a - ba \in S_0$. Hence $S_0 \ne \emptyset$.

If $0 \in S_0$ then 0 is the minimal element of S_0 . Otherwise, since $S_0 \subset \mathbb{Z}^+$ is nonempty, by the WOP, S_0 has a minimal element r. Since $r \in S$ we have r = a - bq for some $q \in \mathbb{Z}$ and $r \geq 0$.

Claim. r < b.

Suppose $r \geq b$. Then

$$0 \le r - b = (a - bq) - b = a - b(q + 1)$$

thus $r - b \in S_0$, which contradicts that r is the minimal element of S_0 . So r < b. Now, suppose there exist $q_1, r_1 \in \mathbb{Z}$ such that $a = bq_1 + r_1$ with $0 \le r_1 < b$. WLOG suppose $r \ge r_1$. We have $bq + r = bq_1 + r_1$, or $b(q_1 - q) = r - r_1 \ge 0$. Suppose $q_1 - q \ne 0$. Then $r - r_1 \ge b$, a contradiction. Therefore, such r is unique. \Box

Corollary '

Let $N \in \mathbb{Z}^+$ and $\mathbb{Z}_N = \{[a]_N \mid a \in \mathbb{Z}\}$. Then $\mathbb{Z}_n = \{[r]\}_{r=0}^{N-1}$.

Proof. Clearly $\{[r]_N\}_{r=0}^{N-1} \subset \mathbb{Z}_N$. Suppose $[a]_N \in \mathbb{Z}_N$.

Claim. There exists $r \in \{0, 1, \dots, N-1\}$ such that $[a]_N = [r]_N$.

Note that $[a]_N = [r]_N$ if and only if $a \equiv r \pmod{N}$. By the division algorithm with $b = N \in \mathbb{Z}^+$ there exist unique $q, r \in \mathbb{Z}$ such that a = Nq + r where $r \in \{0, 1, \ldots, N-1\}$. But if a = Nq + r, then $N \mid a - r$. Hence $a \equiv r \pmod{N}$. \Box

Definition 5.3: Divisibility

Let $a, b \in \mathbb{Z}$. Then b divides a if there is $c \in \mathbb{Z}$ such that a = bc. We say a is divisible by b and write $b \mid a$.

We state some propositions.

- 1. If $a \mid 1$, then $a = \pm 1$.
- 2. If $a \mid b$ and $b \mid a$, then $a = \pm b$.
- 3. If $a \mid b$ and $a \mid c$ then $a \mid bx + cy$ for any $x, y \in \mathbb{Z}$.
- 4. If $a \mid b$ and $b \mid c$ then $a \mid c$.

Proof. (1) Suppose $a \mid 1$. Then 1 = ac for some $c \in \mathbb{Z}$. Hence $a \in \mathbb{Z}^{\times} = \{\pm 1\}$.

(2) Suppose $a \mid b$ and $b \mid a$. Then $b = ak_1$ and $a = bk_2$ for some $k_1, k_2 \in \mathbb{Z}$. Hence $a = bk_2 = (ak_1)k_2 = a(k_1k_2)$, so $k_1k_2 = 1$. So $k_1, k_2 \in \mathbb{Z}^{\times}$ and $k = \pm 1, k_2 = \pm 1$. Thus $a = \pm b$.

(3) Since $a \mid b, a \mid bx$ for all $x \in \mathbb{Z}$, and since $a \mid c$, then $a \mid cy$ for all $y \in \mathbb{Z}$. Now if $a \mid \alpha$ and $a \mid \beta$ for $\alpha, \beta \in \mathbb{Z}$ then $a \mid \alpha + \beta$. Let $\alpha = bx$ and $\beta = cy$. This completes the proof.

Definition 5.4: Greatest Common Divisor

Let $a, b \in \mathbb{Z}$ with a and b not both zero. Then $d \in \mathbb{Z}^+$ is called the **greatest** common divisor of a and b if

- $d \mid a \text{ and } d \mid b$.
- If $c \in \mathbb{Z}$ with $c \mid a$ and $c \mid b$, then $c \mid d$.

We denote this d by d = (a, b) = gcd(a, b).

Theorem 5.8

The gcd of a and b exists and is unique. Moreover, there exist integers x, y such that d = ax + by.

Proof. Let $S = \{n \in \mathbb{Z} \mid n = ax + by \text{ for some } x, y \in \mathbb{Z}\}$. Clearly $S \subset \mathbb{Z}$ which contains a and b. By the same argument, S contains -a and -b. Thus S contains positive integers, and by WOP, S contains a minimal positive element. Call this element d.

Claim. $d = \gcd(a, b)$.

First, note that $d \in S \Rightarrow d = ax + by$ for some $x, y \in \mathbb{Z}$. Applying the division algorithm to a and d, there exist q, r such that a = dq + r where $0 \le r < d$. But

$$r = a - dq$$

= $a - (ax + by)q$
= $a(1 - xq) + b(-yq)$.

so $r \in S$. If r > 0, then it contradicts the minimality of d, so r = 0. Hence a = dq, and $d \mid a$. Similarly, $d \mid b$, and d is a common divisor of a and b.

Now, suppose $c \mid a$ and $c \mid b$. Then there exist $u, v \in \mathbb{Z}$ such that a = uc and b = vc. Hence d = ax + by = c(ux + vy), so $c \mid d$. This proves $d = \gcd(a, b)$.

For the uniqueness, suppose d and d' are the greatest common divisors of a and b. Then $d, d' \in \mathbb{Z}^+, d \mid d'$, and $d' \mid d$. Hence d = d'.

Lemma –

Let $a, b \in \mathbb{Z}$, not both zero. Suppose there exist $q, r \in \mathbb{Z}$ such that a = bq + r. Then (a, b) = (b, r).

Let $a, b \in \mathbb{Z}^+$ with a > b. By repeated application of the division algorithm,

 $a = bq_1 + r_1, \qquad q_1, r_1 \in \mathbb{Z}, \quad 0 \le r_1 < b$ $b = r_1q_2 + r_2, \qquad q_2, r_2 \in \mathbb{Z}, \quad 0 \le r_2 < r_1$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $r_{n-1} = r_nq_{n+1} + r_{n+1}, \quad q_{n+1} \in \mathbb{Z}, \quad 0 \le r_{n+1} = 0$

By the lemma, $(a, b) = (b, r_1) = (r_1, r_2) = \cdots = (r_n, 0) = r_n$.

Example 7 Let a = 9180 and b = 1122. Find (a, b).

Solution Division algorithm gives

$$9180 = 1122 \cdot 8 + 204$$
$$1122 = 204 \cdot 5 + 102$$
$$204 = 102 \cdot 2 + 0.$$

so (9180, 1122) = (1122, 204) = (204, 102) = (102, 0) = 102.

We now go back the process of the division algorithm. We have

$$102 = 1122 + 204(-5)$$

= 1122 + (9180 + 1122(-8))(-5)
= 9180(-5) + 1122 \cdot 41

Theorem 5.9 Let $a, b \in \mathbb{Z}$. Then gcd(a, b) = 1 if and only if there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

Proof. (\Rightarrow) If d = gcd(a, b), then there exist $x, y \in \mathbb{Z}$ such that d = ax + by. If d = 1, then we are done.

(\Leftarrow). Suppose there exist $x, y \in \mathbb{Z}$ with ax + by = 1. Let $d = \gcd(a, b) = 1$. We have $d \mid a$ and $d \mid b$. Then $d \mid ax + by = 1$, so d = 1 since d > 0.

Recall that $\mathbb{Z}_N^{\times} = \{a \in \mathbb{Z}_N \mid a \text{ has a multiplicative inverse mod } N\}.$

Claim.
$$\mathbb{Z}_N^{\times} = U_N$$
 where $U_N = \{a \in \mathbb{Z}_N \mid \gcd(a, N) = 1\}.$

Proof. (\supset) Let $a \in U_N$. Then gcd(a, N) = 1. By the theorem, there exist $x, y \in \mathbb{Z}$ such that ax + Ny = 1. Hence $ax = 1 - Ny = 1 \pmod{N}$, so $a \in \mathbb{Z}_N^{\times}$ and $a^{-1} = x$.

(⊂) Let $a \in \mathbb{Z}_N \times$. Then there exists $x \in \mathbb{Z}_N$ such that $ax = 1 \pmod{N}$. Hence $N \mid ax - 1$, so ax - 1 = Nk for some $k \in \mathbb{Z}$. Letting y = -k gives ax + Ny = 1, and gcd(a, N) = 1 by the theorem. \Box

Theorem 5.10

 $(\mathbb{Z}_N^{\times}, \cdot, 1)$ is a group.

Proof. We only need to show closure. Suppose $a, b \in \mathbb{Z}_N^{\times}$. We claim that $(ab)^{-1} = b^{-1}a^{-1}$. We have

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b$$

= $b^{-1}1b$
= $b^{-1}b$
= 1

and $(b^{-1}a^{-1})(ab) = 1$, so \mathbb{Z}_N^{\times} is closed under \cdot .

Corollary $\mathbb{Z}_p^{\times} = \{1, 2, \dots, p-1\} = \mathbb{Z}_p - \{0\}.$

Proof. $\mathbb{Z}_p = \{a \in \mathbb{Z}_p \mid \gcd(a, p) = 1\}$ but the set is $\mathbb{Z}_p - \{0\}$.

Definition 5.5: Unit Group —

 U_N is called the **unit group** of $\mathbb{Z} \mod N$.

Lemma

Let $a, b, and b \in \mathbb{Z}$. Suppose $a \mid bc$ and gcd(a, b) = 1. Then $a \mid c$.

Proof. Suppose $a \mid bc$. Then bc = ak for some $k \in \mathbb{Z}$. Also, there exist $x, y \in \mathbb{Z}$ such that ax + by = 1. Then

$$c = c \cdot 1$$

= $c(ax + by)$
= $cax + bcy$
= $cax + aky$
= $a(cx + ky)$.

Therefore, $a \mid c = a(ck + ky)$.

5.4 Prime Factorization

Definition 5.6: Prime and Composite Number

An integer p > 1 is called a **prime number** if the only divisors of p are 1 and p. If p > 1 is not prime, it is called a **composite number**.

Lemma

Let $n \in \mathbb{Z}^+$ with n > 1. Then n is composite if and only if there exist a, $b \in \mathbb{Z}$ with n = ab where 1 < a < n and 1 < b < n.

Proof. Exercise.

Lemma

Let $n \in \mathbb{Z}_{\geq 2}$. Then there exists a prime p such that $p \mid n$.

Proof. Let $T = \{n \in \mathbb{Z}_{>2} \mid n \text{ has no prime divisors } \}$.

Claim. $T = \emptyset$.

Assume $T \neq \emptyset$. Since $T \subset \mathbb{Z}^+$, by WOP, there exists a minimal element $n_0 \in \mathbb{T}$. Note that n_0 is not prime, otherwise $n_0 \mid n_0$. So n_0 is composite. By the lemma above, there exist $a, b \in \mathbb{Z}$ such that 1 < a < n and 1 < b < n. Now, since $a < n_0$, then $a \notin T$ by minimality of n, and hence $p \mid a$ for some prime p. Thus $p \mid n_0$, which is a contradiction. Therefore, $T = \emptyset$.

Note that we used the transitivity of the division, so that if $a \mid b$ and $b \mid c$ then $a \mid c$.

Corollary If $p \mid ab$ then $p \mid a$ or $p \mid b$.

Proof. If $p \mid a$ then we are done. Suppose $p \nmid a$. Then $a \neq 0$ and thus gcd(p, a) = 1. By the previous theorem, $p \mid ab$ and gcd(p, a) = 1, then $p \mid b$.

Corollary *

Let p be a prime and $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. If $p \mid \underset{i=1}{n} a_i$ then $p \mid a_i$ for some $i \in \{1, 2, \ldots, n\}$.

Proof. Write
$$\prod_{i=1}^{n} a_i = a_1 \left(\prod_{i=2}^{n} a_i \right)$$
. By the proposition, $p \mid a_1$ or $p \mid \prod_{i=2}^{n} a_i$. If $p \mid a_1$,

then we are done. Otherwise, $p \mid \prod_{i=2} a_i$. We can repeat this process n-1 times until we find the desired a_i .

Example 8

Prove that $\sqrt{2} \notin \mathbb{Q}$

Solution Suppose $\sqrt{2} \in \mathbb{Q}$. Then $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}, b \neq 0$.

Assume gcd(a, b) = 1. (such a/b is called *reduced*) We have $2 = a^2/b^2$, so $a^2 = 2b^2$. Hence $2 \mid a^2$. Since 2 is prime, $2 \mid a$, and a = 2c for some $c \in \mathbb{Z}$. We now get $a^2 = 4c^2 = 2b^2$, so $b^2 = 2c^2$. Hence $2 \mid b$. This contradicts gcd(a, b) = 1, so such a/b does not exist.

' Theorem 5.11: Fundamental Theorem of Arithmetic '

Let $n \in \mathbb{Z}_{\geq 2}$. Then *n* is either prime or can be written as a product of prime numbers. Moreover, the product is unique up to the order in which the factors appear. Equivalently, given $n \in \mathbb{Z}_{\geq 2}$, there exist unique primes p_1, p_2, \ldots, p_r and unique integers $\alpha_1, \alpha_2, \ldots, \alpha_r \in \mathbb{Z}^+$ such that

$$n = \prod_{i=1}^{r} p_i^{\alpha_1}.$$

Proof. (Existence) Let P(n): n = 1, or n is prime, or n is a product of primes. Then P(1) is true.

Suppose $k \in \mathbb{Z}^+$ and P(i) is true for all $1 \leq i \leq k$.

If k = 1, then P(k + 1) = P(2) is true since 2 is prime. Now suppose $k \ge 2$. The induction hypotheses implies that every *i* such that $2 \le i \le k$ is either a prime of a product of primes.

If k+1 is prime, then P(k+1) is true. If k+1 is not prime, then k+1 is composite, so k+1 = ab for integers 1 < a < k+1 and 1 < b < k+1. By the induction hypothesis, a and b are primes or products of primes. Thus k+1 is a product of primes, and P(k+1) is true.

Therefore, by the second principle of induction, P(n) is true for all n.

(Uniqueness) Suppose $n = p_1 p_2 \cdots p_s$ and $n = q_1 q_2 \cdots q_t$ where $p_1, p_2, \ldots, p_s, q_1, q_2, \ldots, q_s$ are primes.

Claim. s = t and $p_i = q_i$ for all $i = 1, 2, \ldots, s$.

WLOG suppose $s \leq t$. Since $p_1 \mid n = q_1 q_2 \cdots q_t$, $p_1 \mid q_j$ for some $j \in \{1, 2, \dots, t\}$. Now, rearrange the q_i s so that $q_j = q_1$. Continuing this process, after s stems we get $p_i = q_i$ for i = 1, 2, ..., s. If s < t then $1 = q_{s+1}q_{s+2}\cdots q_t$. This is impossible sine $q_i > 1$ for all i. Therefore s = t and $p_i = q_i$ for all i = 1, 2, ..., s. \Box

So if $n \in \mathbb{Z}_{\geq 2}$, then

$$n = \prod_{i=1}^r p_i^{m_i}$$

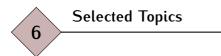
where p_1, p_2, \ldots, p_r are distinct primes, $p_1 < p_2 < \cdots < p_r$, and $m_1, m_2, \ldots, m_r \in \mathbb{Z}^+$.

Example 9 $22540 = 2^2 \cdot 5 \cdot 7^2 \cdot 23.$

Theorem 5.12: Euclid

There exist infinitely many primes.

Proof. Suppose there are finitely many primes p_1, p_2, \ldots, p_n . Then if we let $m = p_1 p_2 \cdots p_n + 1$, since m > 1, there is a prime p with $p \mid m$. Since p_1, p_2, \ldots, p_n are the only primes, the p such that $p \mid m$ is p_i for some $i \in \{1, 2, \ldots, n\}$. Since $p \mid p_1 p_2 \ldots p_n$ and $p \mid m, p \mid 1$, which contradicts that p is prime. Therefore there are infinitely many primes.



6.1 More Group Theory

Definition 6.1: Subgroup

Let (G, *, e) be a group. Let $H \subset G$ be a nonempty subset of G. Then H is a **subgroup** of G if $\forall a, b \in H, a * b \in H$ and $a^{-1} \in H$. If H is a subgroup of G, then we write H < G.

Example 1 Let $G = (\mathbb{Z}, +, 0)$. If we let $N \in \mathbb{Z}^+$, then $N\mathbb{Z} = \{Nk \mid k \in \mathbb{Z}\} \subset \mathbb{Z}$, so $N\mathbb{Z} < \mathbb{Z}$.

Definition 6.2: Left Coset

Let H < G. Define

$$G/H = \{gH \mid g \in G\}$$

where $gH = \{gh \mid h \in H\}$. Here gH is called a **left coset** of H in G.

Right cosets are defined similarly.

Theorem 6.1

G/H is a partition of G.

Proof. 1. $gH \neq \emptyset$ since $g = ge \in gH$. $(e \in H)$

2. We need to prove $G = \bigcup_{g \in G} gH$. Let $g \in G$. Then $g \in gH$ so $g \in \bigcup_{g \in G} gH$. Conversely, $gH \subset G$ for all $g \in G$ so $\bigcup_{g \in G} gH \subset G$.

3. We need to show if $g_1H \neq g_2H$ then $g_1H \cap g_2H = \emptyset$. Suppose $g_1H \cap g_2H \neq \emptyset$. Let $x \in g_1H \cap g_2H$, then $x = g_1h_1 = g_2h_2$ for some $h_1, h_2 \in H$. (must show that $g_1J \subset g_2H$ and vise versa: exercise) \Box

Definition 6.3: Abelian Group

A group (G, *, e) is abelian if the binary operation * is commutative.

Theorem 6.2

If G is an abelian group and H < G, then G/H is a group under the binary operation $g_1H * g_2H = (g_1 * g_2)H$.

Proof. Exercise.

Let $G = \mathbb{Z}$ and $H = N\mathbb{Z} < \mathbb{Z}$ where the group operation is addition. Since addition is commutative, the cosets $\mathbb{Z}/N\mathbb{Z} = \{a + N\mathbb{Z} \mid a \in \mathbb{Z}\}$ forms a group. Note that $a + N\mathbb{Z} = \{a + Nk \mid k \in \mathbb{Z}\} = [a]_N$, the equivalence classes modulo N.

6.2 Field Theory

Definition 6.4: Field

A **field** is a nonempty set with two binary operations: addition and multiplication satisfying the following axioms:

1. F is an abelian group under +

2. F^{\times} is a commutative group under \cdot where $F^{\times} = F - \{0\}$.

3. $a \cdot (b+c) = a \cdot b + a \cdot c$. (Left distribution)

Example 2

 \mathbb{Z} is not a field since $\mathbb{Z}_{unit} = \{\pm 1\} \neq \mathbb{Z}^{\times} = \mathbb{Z} - \{0\}.$

Example 3

 $\mathbb Q$ and $\mathbb R$ are fields.

Example 4

Let $N \in \mathbb{Z}^+$. Then $(\mathbb{Z}_N, +, 0)$ is an abelian group. Also, $(U_N, \cdot, 1)$ is an abelian group where $U_N = \{ \text{set of } a \in \mathbb{Z}_N \text{ with a multiplicative inverse} \} = \{ a \in \mathbb{Z}_N \mid \gcd(a, N) = 1 \}$. Finally, $a \cdot (b + c) = a \cdot b + a \cdot c$. So \mathbb{Z}_N is a field if and only if $U_N = \mathbb{Z}_N - \{ 0 \}$.

Theorem 6.3

 \mathbb{Z}_N is a field if and only if N = p is prime.

Proof. (\Leftarrow) Suppose N = p is prime. Then

 $U_p = \{a \in \mathbb{Z}_p \mid \gcd(a, p) = 1\} = \{1, 2, \dots, p - 1\} = \mathbb{Z}_p - \{0\}.$

 (\Rightarrow) We prove the contrapositive, i.e. if N is composite then \mathbb{Z}_N is not a field. Suppose N is composite. Then N = ab for $a, b \in \mathbb{Z}$ where 1 < a < N and 1 < b < N. In particular,

$$[a] \cdot [b] = [ab] = [N] = [0].$$

Also note that $[a] \neq [0]$ and $[b] \neq [0]$.

Claim. $[a] \notin U_N$.

Suppose $a \in U_N$. Hence there is $[x] \in \mathbb{Z}_N$ such that [x][a] = [1]. It follows that ([x][a])[b] = [1][b] = [b]. Butt [a][b] = [0], so [b] = [x][0] = [0], contradicting $[b] \neq [0]$. Therefore, \mathbb{Z}_N is not a field if N is composite, and this completes the proof.

Remark.

 \mathbb{Z}_p is called the *finite field of order* p and denoted \mathbb{F}_p .

Definition 6.5: Polynomial -

Let F be a field. A **polynomial** over F in the varible x is an expression of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_N x^N$$

where $a_0, a_1, a_2, \ldots, a_N \in F$, and $N \in \mathbb{Z}_{>0}$.

The a_i s are called the *coefficients* of f(x). If $a_N \neq 0$ then a_N is called the *leading* coefficient, and a_0 is called the constant term of f(x). N is called the degree of f(x), denoted deg(f(x)). If $f(x) = a_0 \neq 0$, then f(x) is called a nonzero constant polynomial and has degree 0. If f(x) = 0 then f(x) is called the zero polynomial, which is not assigned a degree.

Definition 6.6: F(x)

F[x] is the set of all polynomials with coefficients in F.

Let

$$f(x) = a_0 + a_1 x + \dots + a_N x^N$$
$$g(x) = b_0 + b_1 x + \dots + b_M x^M.$$

If $N \neq M$, say N > M, and write

$$g(x) = \sum_{i=0}^{M} b_i x^i + b_{m+1} x^{m+1} + \dots + b_N x^N$$

where $b_i = 0$ for $i = M + 1, \ldots, N$. Then

$$f(x) + g(x) = \sum_{i=0}^{N} (a_i + b_i) x^i \in F[x].$$

Thus F[x] is closed under addition. For multiplication, we have

$$f(x) \cdot g(x) = (a_0 + a_1 x + \dots + a_N x^N)(b_0 + b_1 x + \dots + b_M x^M)$$

= $a_0 b_0 + (a_0 b_1 + a_1 b_0)x + (a_0 b_2 + a_1 b_1 + a_2 b_0)x^2 + \dots + a_N b_M x^{N+M}.$

The coefficient of x^k in fg is

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}$$

where $a_i = 0$ if i > N and $b_j = 0$ if j > M.

- **Remark.** f(x) = 0 is the additive identity, and f(x) = 1 is the multiplicative identity.
 - (F[x], +, 0) is an abelian group.
 - There exist a nonzero polynomial without a multiplicative inverse, so F[x] is not a field.

Example 5

Let $F = \mathbb{Z}_5$. Let $f(x) = 4 + 2x + 3x^3$ and $g(x) = 1 + 4x^2 + x^3$. Then $f(x)g(x) = 4 + 2x + x^2 + 2x^4 + 2x^5 + 3x^6$.

Theorem 6.4

Let F be a field and $f(x), g(x) \in F[x]$ with $f(x) \neq 0, g(x) \neq 0$, and $f(x) + g(x) \neq 0$. Then 1. deg $(f(x) + g(x)) \leq \max\{ \deg(f(x)), \deg(g(x)) \}$ 2. deg $(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$.

Remark.

The symbol \neq is used for identically zero, which means the value is zero for any x.

Proof. (1) Let deg (f(x)) = N and deg (g(x)) = M. If N > M, then deg (f(x) + g(x)) = N. Similarly, if M > N then deg (f(x) + g(x)) = M. If N > M, then max{deg (f(x)), deg (g(x))} = max{N, M}, N. Similarly, if M > N then

 $\max\{\deg(f(x)), \deg(f(x))\} = M$. Finally, suppose N = M. Then, $\deg(f(x) + g(x)) = N$ unless $a_N = -b_N$, which in this case $\deg(f(x) + g(x)) \leq N - 1 < N$. This completes the proof.

(2) Exercise.

Theorem 6.5

Let F be a field, and $f(x),\,g(x)\in F[x]$ with $g(x)\neq 0.$ Then there exist q(x), $r(x)\in F[x]$ such that f(x)=g(x)q(x)+r(x)

where r(x) = 0 or $0 \le \deg(r(x)) < \deg(g(x))$.

Proof. Define

$$S = \{h(x) \in F[x] \mid h(x) = f(x) - g(x)q(x) \text{ for some } q(x) \in F[x]\}.$$

Then $S \neq \emptyset$ since $f(x) \in S$ (this can be attained by taking q(x) = 0). If the zero polynomial is in S, then 0 = f(x) - g(x)q(x) for some $q(x) \in F[x]$, which proves the theorem with r(x) = 0. So, suppose the zero polynomial is not in S. Define

$$D = \{ n \in \mathbb{Z}_{>0} \mid \deg(h(x)) = n \text{ for some } h(x) \in S \}$$

If S contains a constant polynomial, then r(x) is constant and has degree 0. In particular, $\alpha = f(x) - g(x)q(x)$ for some $q(x) \in F[x]$, so f(x) = g(x)q(x) + r(x) with $r(x) = \alpha$ and deg (r(x)) = 0.

Now, if $D \subset \mathbb{Z}^+$, $D \neq \emptyset$, and r(x) of smallest degree exists by the WOP. Since $r(x) \in S$ we have r(x) = f(x) - g(x)q(x) or f(x) = g(x)q(x) + r(x) for some $q(x) \in F[x]$. We must show that deg $(r(x)) < \deg(g(x))$. Suppose deg $(r(x)) \geq \deg(g(x))$. Let $m = \deg(g(x))$ and t = (r(x)). We have

$$g(x) = b_0 + b_1 x + \dots + b_m x^m$$
$$r(x) = c_0 + c_1 x + \dots + c_t x^t$$

for $b_0, \ldots, b_m, c_0, \ldots, c_t \in F$ with $b_m, c_t \neq 0$. Define $r_1(x) = r(x) - c_t b_m^{-1} x^{t-m} g(x) \in S$.

Claim.
$$r_1(x) \in S$$
 and deg $(r_1(x)) < deg (r(x))$.

Note that

$$c_t b_m^{-1} x^{t-m} g(x) = c_t b_m^{-1} b_0 x^{t-m} + c_t b_m^{-1} b_1 x^{t+1-m} + \dots + c_t x^t$$

Hence deg $(r_1(x)) < deg (r(x))$. This gives a contradiction and completes the proof.

Corollary **-**

Let $f(x) \in F[x]$ and $c \in F$. Then there exists $q * x \in F[x]$ such that

$$f(x) = (x - c)q(x) + f(c).$$

Proof. Apply the division algorithm to get g(x) = x - c. Then r(x) has degree 0, so it must be a constant. Substitute x = c to get r(c) = r = f(c).

Corollary =

If $f(x) \in F[x]$ and f(x) = 0 for some $c \in F$ then f(x) = (x - c)g(x) for some $g(x) \in F[x]$ with deg $(g(x)) < \deg(f(x))$.