Quadratic Excess Theorem

Joshua Im

Mentor: William Taylor

April 24, 2025

Quadratic Residues

Let p denote a prime number throughout the presentation.

Definition: Quadratic Residue

A **quadratic residue** modulo a prime p is a number $a \in \{1, \dots, p-1\}$ such that there exists $x \in \{1, \dots, p-1\}$ such that

$$x^2 \equiv a \pmod{p}$$
.

Quadratic Residues

Let p denote a prime number throughout the presentation.

Definition: Quadratic Residue

A **quadratic residue** modulo a prime p is a number $a \in \{1,\ldots,p-1\}$ such that there exists $x \in \{1,\ldots,p-1\}$ such that

$$x^2 \equiv a \pmod{p}$$
.

 $3^2 \equiv 2 \pmod{7}$, so 2 is a quadratic residue mod 7.

Quadratic Nonresidues

$$1^2 = 1 \equiv 1 \pmod{7}$$

 $2^2 = 4 \equiv 4 \pmod{7}$
 $3^2 = 9 \equiv 2 \pmod{7}$
 $4^2 = 16 \equiv 2 \pmod{7}$
 $5^2 = 25 \equiv 4 \pmod{7}$
 $6^2 = 36 \equiv 1 \pmod{7}$

- 1, 2, 4 are quadratic residues mod 7.
- lacksquare 3, 5, 6 are not quadratic residues, or **quadratic nonresidues** mod 7.

Use QR for quadratic residues, QNR for quadratic nonresidues.

Basic Properties (1)

Theorem

- \blacksquare QR \times QR = QR.
- \blacksquare QR \times QNR = QNR.
- $\square \ QNR \times QNR = QR.$

Basic Properties (1)

Theorem

- \blacksquare QR \times QR = QR.
- \blacksquare QR \times QNR = QNR.
- \blacksquare QNR \times QNR = QR.

This seems like

- $1 \times 1 = 1$
- $1 \times (-1) = -1$
- $(-1) \times (-1) = 1!$

Legendre Symbol

Definition: Legendre Symbol

Let p be a fixed prime. The Legendre symbol mod p is a function $\chi:\mathbb{Z}\to\{-1,0,1\}$, defined by

$$\chi(n) = \left(\frac{n}{p}\right) = \begin{cases} 1 & n \text{ is QR mod } p \\ -1 & n \text{ is QNR mod } p \\ 0 & p \mid n \end{cases}$$

Legendre Symbol

Definition: Legendre Symbol

Let p be a fixed prime. The Legendre symbol mod p is a function $\chi:\mathbb{Z}\to\{-1,0,1\}$, defined by

$$\chi(n) = \left(\frac{n}{p}\right) = \begin{cases} 1 & n \text{ is QR mod } p \\ -1 & n \text{ is QNR mod } p \\ 0 & p \mid n \end{cases}$$

Then the Legendre symbol is completely multiplicative. That is,

$$\left(\frac{mn}{p}\right) = \left(\frac{m}{p}\right) \left(\frac{n}{p}\right)$$

for all $m, n \in \mathbb{Z}$.

Theorem

- \blacksquare QR \times QR = QR.
- \blacksquare QR \times QNR = QNR.
- $QNR \times QNR = QR$.

Theorem

- \blacksquare QR \times QR = QR.
- \blacksquare QR \times QNR = QNR.
- $QNR \times QNR = QR$.

Theorem

-1 is a QR mod p if and only if $p \equiv 1 \pmod{4}$.

Theorem

- $QR \times QR = QR$.
- \blacksquare QR \times QNR = QNR.
- \blacksquare QNR \times QNR = QR.

Theorem

-1 is a QR mod p if and only if $p \equiv 1 \pmod{4}$.

So if $p \equiv 1 \pmod{4}$ and a is a QR, then $-a \equiv p - a$ is also a QR.

Therefore if $p \equiv 1 \pmod{4}$ the QRs mod p are symmetric to p/2.

• Theorem

- \blacksquare QR \times QR = QR.
- \blacksquare OR \times ONR = ONR.
- \blacksquare QNR \times QNR = QR.

- Theorem

-1 is a QR mod p if and only if $p \equiv 1 \pmod{4}$.

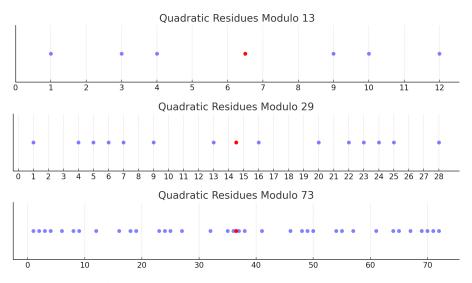
So if $p \equiv 1 \pmod{4}$ and a is a QR, then $-a \equiv p - a$ is also a QR.

Therefore if $p \equiv 1 \pmod{4}$ the QRs mod p are symmetric to p/2.

Theorem

There are $\frac{p-1}{2}$ QRs mod p.

Distribution of Quadratic Residues - 1 mod 4 primes



Joshua Im — Texas A&M University

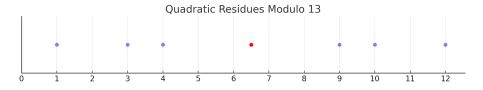
Distribution of Quadratic Residues - 1 mod 4 primes

- QRs symmetric to p/2
- Equal numbers of QRs lying on (0, p/2) and (p/2, p).

Let

$$E_p = (\# \text{ of QRs lying on } (0, p/2)) - (\# \text{ of QRs lying on } (p/2, p))$$

Then $E_p = 0$ if $p \equiv 1 \pmod{4}$.



Distribution of Quadratic Residues - 3 mod 4 primes

Is
$$E_p = 0$$
 if $p \equiv 3 \pmod{4}$?

Distribution of Quadratic Residues - 3 mod 4 primes

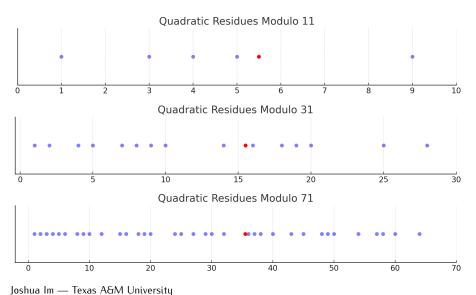
Is
$$E_p = 0$$
 if $p \equiv 3 \pmod{4}$?

No!

There are $\frac{p-1}{2}$ (odd) QRs mod p, there can't be same amount of QRs on (0, p/2) and (p/2, p).

So $E_p \neq 0$ for $p \equiv 3 \pmod{4}$ primes.

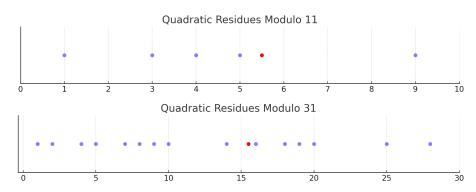
Distribution of Quadratic Residue - 3 mod 4 primes



10/20

Distribution of Quadratic Residues - 3 mod 4 primes

$$E_{11}=3$$
, $E_{31}=3$, $E_{71}=7$.



Seems like $E_p > 0$ for $p \equiv 3 \pmod{4}$?

Quadratic Excess Theorem - Statement

Theorem: Quadratic Excess Theorem

Let p be a 3 mod 4 prime. Then more quadratic residues mod p lie on the interval (0,p/2) than in the interval (p/2,p).

So $E_p > 0$ when $p \equiv 3 \pmod{4}$.

Lemma - Gauss Sum

Theorem: Weighed Gauss Sum

$$\sum_{k=1}^{p-1} \left(\frac{p}{k}\right) \exp\left(\frac{2\pi i k n}{p}\right) = \left(\frac{n}{p}\right) i \sqrt{p}$$

Lemma - Gauss Sum

Theorem: Weighed Gauss Sum

$$\sum_{k=1}^{p-1} \left(\frac{p}{k}\right) \exp\left(\frac{2\pi i k n}{p}\right) = \left(\frac{n}{p}\right) i \sqrt{p}$$

Define
$$G(n) = \sum_{k=1}^{p-1} \left(\frac{p}{k}\right) \exp\left(\frac{2\pi i k n}{p}\right)$$
. Then

$$G(n) = \left(\frac{n}{p}\right) i\sqrt{p}$$

$$G(1) = \left(\frac{1}{p}\right) i\sqrt{p} = i\sqrt{p}$$

$$\frac{G(n)}{G(1)} = \left(\frac{n}{p}\right)$$

Let $p \equiv 3 \pmod{4}$ a prime. Define L(s) by

$$L(s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\left(\frac{n}{p}\right)}{n^s}$$

Sum runs over all positive integers

Let $p \equiv 3 \pmod{4}$ a prime. Define L(s) by

$$L(s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\left(\frac{n}{p}\right)}{n^s}$$

- Sum runs over all positive integers
- Can rearrange to let the sum run over all odds

$$L(1) = \sum_{n=1}^{\infty} \frac{\left(\frac{n}{p}\right)}{n} = \alpha \sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n}$$

for some positive constant α .

$$L(1) = \alpha \sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n}$$

We now note that L(1) > 0 (Dirichlet). So

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} > 0.$$

Recall that
$$\left(\frac{n}{p}\right) = \frac{G(n)}{G(1)} = \frac{1}{i\sqrt{p}} \sum_{k=1}^{p-1} \left(\frac{p}{k}\right) \exp\left(\frac{2\pi i k n}{p}\right)$$
. Then

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} = \frac{1}{i\sqrt{p}} \sum_{n \text{ odd}} \frac{1}{n} \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \exp\left(\frac{2\pi i k n}{p}\right)$$
$$= \frac{i\pi/4}{i\sqrt{p}} \left(\sum_{k \in \{0, p/2\}} \left(\frac{k}{p}\right) - \sum_{k \in \{p/2, p\}} \left(\frac{k}{p}\right)\right)$$

Thus

$$\sum_{n \text{ odd}} \frac{\left(\frac{n}{p}\right)}{n} = \frac{i\pi/4}{i\sqrt{p}} \left(\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) - \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right)\right) > 0,$$

which gives

$$\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) - \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) > 0.$$

Since there are $\frac{p-1}{2}$ QRs and $\frac{p-1}{2}$ QNRs

$$\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) + \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) = 0.$$

Therefore

$$\sum_{k \in (0, p/2)} \left(\frac{k}{p}\right) - \sum_{k \in (p/2, p)} \left(\frac{k}{p}\right) > 0$$

gives

$$\sum_{k \in (0, p/2)} \left(\frac{k}{p} \right) > 0,$$

as desired.

Further Results about Quadratic Residues

■ No elementary proof of the Quadratic Excess Theorem is known.

Further Results about Quadratic Residues

■ No elementary proof of the Quadratic Excess Theorem is known.

Define

$$S_p = (\text{sum of QRs lying on } (0, p)) - (\text{sum of QNRs lying on } (0, p)).$$

Theorem

 S_p is an odd multiple of p.

- $S_{11} = -11 = (-1) \cdot 11$
- $S_{13} = 0$
- $S_{29} = 0$
- $S_{31} = -93 = (-3) \cdot 31$

