Topology 1

Taught by Byung-Hoon Hwang, Sangmyung University

Joshua Im

March 6 - June 20, 2024

Contents

1	Тор	ological Spaces: Definitions	2	
	1.1	Topological Spaces	2	
	1.2	Accumulation Points	5	
	1.3	Closed Sets	7	
	1.4	Closure of a Set	9	
	1.5	Interior, Exterior, Boundary	11	
	1.6	Neighborhoods and Neighborhood Systems	14	
	1.7	Sequences	14	
	1.8	Fine and Coarse Topologies	15	
	1.9	Subspace Topologies	15	
2	Bas	es and Subbases	17	
	2.1	Basis	17	
	2.2	Subbasis	19	
	2.3	Local Bases	21	
3	Con	tinuous Functions	22	
4	Topology on the Line and Plane			
	4.1	Open Sets in \mathbb{R}	27	
	4.2	Accumulation Points	28	
	4.3	Closed Sets	28	
	4.4	Compactness	29	
	4.5	Sequences	29	
	4.6	Subsequences	30	
	4.7	Cauchy Sequences	30	

1

Topological Spaces: Definitions

1.1 Topological Spaces -

Definition 1.1: Topology

Let X be a non-empty set. A **topology** on a set X is a family \mathcal{T} of subsets satisfying

- \emptyset and X are in \mathcal{T} .
- The union of any number of sets in \mathcal{T} is in \mathcal{T} .
- The intersection of any two sets in \mathcal{T} is in \mathcal{T} .

Note The members of \mathcal{T} are also called *open sets*.

Remark.

For a non-empty set X, the topology on X may not be unique. For these cases, we write (X, \mathcal{T}_1) , (X, \mathcal{T}_2) , and so on. The space of these topologies are called the topological space.

Example 1

Let $X = \{a, b, c\}$. Then

- {{a}, {a, c}, X} is not a topology since Ø is not included.
 {Ø, {a}, {a, c}, X} is a topology.
- $\{\emptyset, X\}$ is a topology.

Theorem 1.1

Let $\{\mathcal{T}_i\}_{i\in I}$ be a collection of topologies on X. Then, $\bigcap \mathcal{T}_i$ is also a topology $i \in I$ on X.

Proof. We prove that $\bigcap \mathcal{T}_i$ satisfies the three axioms of a topology.

First, since each \mathcal{T}_i is a topology on X, \emptyset and X is in \mathcal{T}_i for all $i \in I$. So \emptyset and Xare also in $\bigcap \mathcal{T}_i$. $i \in I$

Next, for any set $G_k \in \bigcap_{i \in I} \mathcal{T}_i$ for all $k \in K$, so $G_k \in \mathcal{T}_i$ for all $i \in I$ and $k \in K$. $i \in I$

Therefore,
$$\bigcup_{k \in K} G_k \in \mathcal{T}_i$$
 for all $i \in I$, and $\bigcup_{k \in K} G_k \in \bigcap_{i \in I} \mathcal{T}_i$.

Finally, for any set $G_k \in \bigcap_{i \in I} \mathcal{T}_i$ for k = 1, 2, ..., n, so $G_k \in \mathcal{T}_i$ for all $i \in I$ and k = 1, 2, ..., n. Therefore, $\bigcap_{i=1}^n G_k \in \mathcal{T}_i$ for all $i \in I$, and $\bigcap_{i=1}^n G_k \in \bigcap_{i \in I} \mathcal{T}_i$.

Therefore, $\bigcap_{i \in I} \mathcal{T}_i$ satisfies the three axioms of a topology, $\bigcap_{i \in I} \mathcal{T}_i$ is also a topology.

Example 2

Example 2 Let $X = \{a, b, c\}$, and • $\mathcal{T}_1 = \{\emptyset, \{a\}, \{a, c\}, X\}$ • $\mathcal{T}_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$ are topologies on X. Then, $\mathcal{T}_1 \cap \mathcal{T}_2 = \{\emptyset, \{a\}, X\}$ is a topology, but $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{a\}, \{c\}, \{a, b\}, X\}$ is not a topology.

Remark.

Unlike intersections, the union of topologies need not be a topology.

The three axioms of topology are equivalent to the following two axioms:

Corollary

 \mathcal{T} is a topology if and only if

- The union of any number of sets in \mathcal{T} is in \mathcal{T} .
- The intersection of any finite number of sets in \mathcal{T} is in \mathcal{T} .

Proof. We only have to prove axiom 1 of topology. It suffices to show that

$$\bigcup_{i \in \emptyset} G_i = \emptyset \text{ and } \bigcap_{i \in \emptyset} G_i = X.$$

First, suppose that there exists $p \in X$ such that $p \in \bigcup_{i \in A} G_i$. Then, there exists some $i \in \emptyset$ such that $p \in G_i$, which is a contradiction. Therefore, $\bigcup_{i \in \emptyset} G_i = \emptyset$.

Next, it is trivial that $\bigcap_{i \in \emptyset} G_i \subseteq X$. Suppose that there is some $p \in X$ such that $p \notin \bigcap G_i$. Then, there exists some $i \in \emptyset$ such that $p \notin G_j$, which is a contradiction. $i \in \emptyset$

So
$$X \subseteq \bigcap_{i \in \emptyset} G_i$$
, and $\bigcap_{i \in \emptyset} G_i = X$.

We state four examples of topology:

- Discrete topology,
- Indiscrete topology,
- Cofinite topology,
- Cocountable topology.

Example 3

(X, D) where $D = \{A \subseteq X \mid A \text{ is a subset of } X\}$, or D is the power set of X, is a discrete topology.

Example 4

(X, I) where $I = \{\emptyset, X\}$ is an indiscrete topology.

Example 5

 (X,\mathcal{T}) where $\mathcal{T} = \{A \in X \mid A = \emptyset \text{ or } A^{\complement} \text{ is finite}\}$ is a cofinite topology. Show that this is actually a topology.

Solution By definition, $\emptyset \in \mathcal{T}$. Also, since $X^{\complement} = \emptyset$ is finite, $X \in \mathcal{T}$. Now, for any $G_i \in \mathcal{T}$ for $i \in I$, we have G_i^{\complement} is finite. Then, its intersection $\bigcap G_i^{\complement}$ is also finite. Now,

$$\left(\bigcup_{i\in I}G_i\right)^{\complement} = \bigcap_{i\in I}G_i^{\complement} \subseteq G_i^{\complement}$$

by De Morgan's law, and $\left(\bigcup_{i \in I} G_i\right)^{\mathsf{c}}$ is finite. Therefore, $\bigcup_{i \in I} G_i \in \mathcal{T}$.

Finally, for any $G_i \in \mathcal{T}$ for i = 1, 2, ..., n, $\left(\bigcap_{i=1}^n G_i\right)^{\complement} = \bigcup_{i=1}^n G_i^{\complement}$ is finite, so $\bigcap^{n} G_i \in \mathcal{T}.$

Therefore, (X, \mathcal{T}) is a topology.

Example 6

 (X, \mathcal{T}) where $\mathcal{T} = \{A \subseteq X \mid A = \emptyset \text{ or } A^{\complement} \text{ is countable} \}$ is a cocountable topology. Show that this is actually a topology.

We define **countable** as either *finite* or *countably infnite*. For example, \mathbb{N} , \mathbb{Z} , \mathbb{Q} are countable, but \mathbb{R} or $\mathbb{R} \setminus \mathbb{Q}$ are uncountable.

Solution First, by definition, $\emptyset \in \mathcal{T}$. Also, since $X^{\complement} = \emptyset$ is countable, $X \in \mathcal{T}$. For any $G_i \in \mathcal{T}$ for $i \in I$, G_i^{\complement} is countable. Then, its intersection $\bigcap_{i \in I} G_i^{\complement}$ is also countable. Now,

$$\left(\bigcup_{i\in I}G_i\right)^\complement = \bigcap_{i\in I}G_i^\complement\subseteq G_i^\complement$$

by De Morgan's law, and $\left(\bigcup_{i\in I}G_i\right)^{\complement}$ is countable. Therefore, $\bigcup_{i\in I}G_i\in\mathcal{T}$.

Finally, for any $G_i \in \mathcal{T}$ for i = 1, 2, ..., n, $\left(\bigcap_{i=1}^n G_i\right)^{\complement} = \bigcup_{i=1}^n G_i^{\complement}$ is countable, so

 $\bigcap_{i=1}^{n} G_i \in \mathcal{T}.$

Therefore, (X, \mathcal{T}) is a topology.

1.2 Accumulation Points

Throughout this lecture, we let X a topological space, and A a closed set if not explicitly mentioned.

Definition 1.2: Neighborhood

For a point $p \in X$, a set $H \subseteq X$ is called a **neighborhood** of p if there exists an open set G such that $p \in G \subseteq H$. If H is open, then we say that H is an open neighborhood of p.

Definition 1.3: Interior Point

A point $p \in X$ is called an **interior point** of H if there exists an open neighborhood G of p such that $G \subseteq H$.

Definition 1.4: Accumulation Point

Let X be a topological space, and let A a subset of X. A point $p \in X$ is an **accumulation point** of A if and only if for any open neighborhood G of p,

 $A \cap (G \setminus \{p\}) \neq \emptyset.$

This means that p is an accumulation point of A if for any neighborhood of p, there exists an element of A inside that neighborhood. Here, p need not to be in A.

We write A' as the set of all accumulation points of A.

Example 7 Let $X = \{a, b, c, d\}, A = \{a, b\}, \text{ and } \mathcal{T}_1 = \{\emptyset, X, \{a, b\}, \{d\}, \{a, b, d\}\}.$ In $(X, \mathcal{T}_1),$

	Finding A'			
p	$G ext{ of } p$	$G \setminus \{p\}$		
a	$X, \{a, b\}, \{a, b, d\}$	${b, c, d}, {b}, {b, d}$		
b	$X, \{a, b\}, \{a, b, d\}$	$\{a, c, d\}, \{a\}, \{a, d\}$		
c	X	$\{a, b, d\}$		
d	$X, \{d\}, \{a, b, d\}$	$\{a, b, c\}, \emptyset, \{a, b\}$		

we have $A' = \{a, b, c\}.$

Note If there is a one-point set in a topology, then the point cannot be an accumulation point.

Example 8

Let $X = \{a, b, c, d\}$, $A = \{a, b\}$, and let \mathcal{T}_2 be the discrete topology, and \mathcal{T}_3 the indiscrete topology.

In (X, \mathcal{T}_2) , there are one-point sets for each $p \in X$, namely $\{a\}, \{b\}, \{c\}$, and $\{d\}$, none of them are accumulation points, and $A' = \emptyset$.

In (X, \mathcal{T}_3) , for any point $p \in X$, the open neighborhood of p is only X. Since $(X \setminus \{p\}) \cap A \neq \emptyset$, p is an accumulation point for any p. Therefore, A' = X.

1.3 Closed Sets

We simply define closed sets as the reverse of open sets.

Definition 1.5: Closed Set

Let X be a topological space. A subset A of X is a **closed set** if and only if its complement A^{\complement} is an open set.

Example 9

Let $X = \{a, b, c\}$, and

$$\mathcal{T} = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}.$$

Then, since \mathcal{T} is open, its complement,

$$\{X, \emptyset, \{b, c\}, \{c\}, \{b\}\}$$

is closed.

Theorem 1.2

If $\{A_i\}_{i\in I}$ is a collection of closed subsets of X, then $\bigcap_{i\in I} A_i$ and $\bigcup_{i=1}^n A_i$ are closed.

Proof. Since A_i is closed, its complement A_i^{\complement} is open for $i \in I$. Then, by the definition of topology, $\bigcup_{i \in I} A_i^{\complement}$ is open. By De Morgan's law, since

$$\bigcup_{i\in I} A_i^{\complement} = \left(\bigcap_{i\in I} A_i\right)^{\complement}$$

is open, its complement, $\bigcap_{i \in I} A_i$ is closed.

Similarly, by the definition of topology, $\bigcap_{i=1}^n A_i^\complement$ is open. By De Morgan's law, since

$$\bigcap_{i=1}^{n} A_{i}^{\complement} = \left(\bigcup_{i=1}^{n} A_{i}\right)^{\complement}$$

is open, its complement, $\bigcup_{i=1}^{n} A_i$ is closed.

Theorem 1.3

A subset (not necessarily closed) A of X is closed if and only if $A' \subseteq A$. That is, any accumulation point of A is in A.

This theorem can be used to determine if a set is closed. Before we prove the theorem, we start with a lemma.

Lemma

A set G is an open subset of X if and only if for any $p \in G$, p is an interior point of G. That is, there is an open neighborhood H of p such that $H \subseteq G$.

Proof. (\Rightarrow) Since G is open, for any point $p \in G$, G is an open neighborhood of p. That is, there is an open neighborhood H = G of p.

(\Leftarrow) For $p \in G$, let H_p the open neighborhood of p satisfying $H_p \subseteq G$. Then,

$$G = \bigcup_{p \in G} p$$
$$\subseteq \bigcup_{p \in G} H_p \ (p \in H_p)$$
$$\subseteq \bigcup_{p \in G} G \ (H_p \subseteq G)$$
$$= G.$$

This gives $G \subseteq \bigcup_{p \in G} H_p$ and $\bigcup_{p \in G} H_p \subseteq G$, thus $G = \bigcup_{p \in G} H_p$. Therefore, since H_p is open for all p, its union, G, is also open.

We now prove the theorem.

Proof. (\Rightarrow)

Claim. For all $p \in A'$, $p \in A$. That is, any accumulation point of A is in A.

We prove by contradiction. Suppose that there exists some $p \in A'$ such that $p \notin A$. Since A is closed, A^{\complement} is an open neighborhood of p. On the other hand, $p \in A'$ implies that for any open neighborhood H of p, $A \cap (H \setminus \{p\}) \neq \emptyset$. Taking $H = A^{\complement}$, we get $A \cap (A^{\complement} \setminus \{p\}) \neq \emptyset$, which is a contradiction because

$$A \cap \left(A^{\complement} \setminus \{p\}\right) \subseteq A \cap A^{\complement} = \emptyset.$$

Therefore, $p \in A$, and $A' \subseteq A$.

Note To show that A is closed, we need to show that A^{\complement} is open. However, \mathcal{T} is not explicitly stated here. This is why we need the lemma.

Claim. For any $p \in A^{\complement}$, there is an open neighborhood of p such that $G \subseteq A^{\complement}$.

For any $p \in A^{\complement}$, by assumption, $p \notin A$, so $p \notin A'$. $(A' \subseteq A)$ This implies that there is an open neighborhood G of p such that $A \cap (G \setminus \{p\}) = \emptyset$. Since, $p \notin A$,

$$A \cap (G \setminus \{p\}) = A \cap G = \emptyset.$$

Therefore, $G \subseteq A^{\complement}$. By the lemma, A^{\complement} is open, and hence A is closed.

1.4 Closure of a Set ——

Consider a set B (not necessarily closed). The biggest closed set containing B is X because elements in

$$\mathcal{T} = \{\emptyset, X, \cdots\}$$

are all open, and its complement contains X, which is closed. We now want to consider the smallest closed set containing B.

Definition 1.6: Closure

The closure \overline{A} of $A \subseteq X$ is the smallest closed subset containing A.

This can also be defined by

$$\bar{A} = \bigcap_{i \in I} F_i,$$

where $\{F_i\}_{i \in I}$ is a collection of closed subsets containing A. So for any closed subset F containing A,

 $A \subseteq \overline{A} \subseteq F.$

It is not hard to see that $A = \overline{A}$ if and only if A is closed.

Remark. $\overline{A} = A \Leftrightarrow A$ is closed.

Example 10

Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then the closed sets are Let $X = \{a, b, c\}$ and f $\{X, \emptyset, \{b, c\}, \{a\}\}$. Then, • $A = \{a\} \Rightarrow \overline{A} = X$ • $B = \{b\} \Rightarrow \overline{B} = \{b, c\}$ • $C = \{c\} \Rightarrow \overline{C} = \{c\}$

Example 11

Let (X, \mathcal{T}) be the cofinite space. That is, $\mathcal{T} = \{A \subseteq X \mid A = \emptyset \text{ or } A^{\complement} \text{ is finite}\}.$ If X is finite, then since \mathcal{T} contains all subsets of X, X is discrete. Therefore, $\forall A \subseteq X$, so $\overline{A} = A$. Note that in discrete space, every set is open and closed at the same time.

If X is infinite, we divide cases to if A is finite or infinite. Note that in cofinite space, if a subset is finite, then it is closed. This is because

 $\mathcal{T} = \{\emptyset, X, X \setminus \{\text{finite}\}\}$

consists of open sets, and its complement

 $\left\{X, \emptyset, \{\text{finite}\}\right\}$

consists of closed sets.

If A is infinite, then $\overline{A} = X$.

Lemma

If $A \subseteq B$, then $A' \subseteq B'$.

Proof. We claim that $\forall p \in A', p \in B'$. Since p is an accumulation point of A, there exists an open neighborhood G of p such that $A \cap (G \setminus \{p\}) \neq \emptyset$. Then,

$$A \cap (G \setminus \{p\}) \neq \emptyset \to B \cap (G \setminus \{p\}) \neq \emptyset$$

because $A \subseteq B$. Therefore, p is an accumulation point of B, so $p \in B'$.

Theorem 1.4 For any $A \subseteq X$, $\overline{A} = A \cup A'$.

Proof. (\supseteq) By the definition of closure, $A \subseteq \overline{A}$, and \overline{A} is closed. By the lemma, we have

$$A' \subseteq (\bar{A})' = \bar{A},$$

 \mathbf{SO}

 $A' \subseteq \overline{A}.$

Therefore, $A' \subseteq \overline{A}$ and $A \subseteq \overline{A}$, so $A' \cup A \subseteq \overline{A}$.

 (\subseteq)

Claim. $A \cup A'$ is closed, i.e. $(A \cup A')^{\complement}$ is open.

We prove that if $\forall p \in (A \cup A')^{\complement}$, there exists an open neighborhood G of p such that $G \subseteq (A \cup A')^{\complement}$. Since $p \in (A \cup A')^{\complement}$, $p \notin A$ and $p \notin A'$. So there is an open neighborhood G of p such that

$$A \cap (G \setminus \{p\}) = \emptyset$$

Since $A \notin A$, $A \cap (G \setminus \{p\}) = A \cap G = \emptyset$, and $G \subseteq A^{\complement}$.

Now, $\forall q \in G$, since G is an open neighborhood of q,

$$A \cap (G \setminus \{q\}) = \emptyset.$$

This gives $A \cap G = \emptyset$, and since $q \notin A'$, $G \cap A' = \emptyset$. Therefore, $G \subseteq (A')^{\complement}$.

So $G \subseteq (A \cup A')^{\complement}$. Since p is an interior point and p was chosen arbitrarily, we conclude that $(A \cup A')^{\complement}$ is open.

Corollary

 $p \in \overline{A}$ if and only if for all open neighborhood G of $p, A \cap G \neq \emptyset$.

Proof. (\Rightarrow) If $p \in \overline{A}$, then $p \in A$ or $p \in A'$. By definition of $A', A \cap G \neq \emptyset$.

(⇐) For some open neighborhood G, if $A \cap G \setminus \{p\} = \emptyset$, then $p \in A$. If $A \cap G \setminus \{p\} \neq \emptyset$, then p is an interior point of A, so $p \in A'$. Therefore, $p = A \cup A' = \overline{A}$.

1.5 Interior, Exterior, Boundary -

Definition 1.7: Dense

A set B is called **dense** in X if $\overline{B} = X$.

This means $\forall p \in X, p \in B \text{ or } p \in B'$.

🛚 Definition 1.8: Interior 💳

The **interior** of A, int(A) is the union of all open subsets contained in A.

Let $\{G_i\}_{i\in I}$ be a collection of all open subsets contained in A. Then,

$$\operatorname{int}(A) = \bigcup_{i \in I} G_i.$$

For all open set G contained in A,

$$G \subseteq int(A) \subseteq A.$$

Therefore, int(A) is the largest open set contained in A.

Remark.

int(A) = A if and only if A is open.

Example 12

- Let $X = \{a, b, c, d\}$, and $\mathcal{T} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then, $A = \{a, b, c\} \to int(A) = \{a, b\}$ $B = \{b, c\} \to int(B) = \{b\}$ $C = \{a\} \to int(C) = \{a\}$

Theorem 1.5

 $int(A) = \{ p \in A \mid p \text{ is an interior point of } A \}.$

Proof. Let $K = \{p \in A \mid p \text{ is an interior point of } A\}$. (\subseteq)

Claim. $\forall p \in int(A)$, there exists an open neighborhood G of p such that $G \subseteq A$. (p is an interior point of A)

 $\forall p \in int(A), int(A)$ is an open neighborhood of p contained in A by definition. Therefore, $p \in K$.

 $(\supseteq) \forall p \in K$, there exists an open neighborhood G_p such that $G_p \subseteq A$. Then,

$$K = \bigcup_{p \in K} \{p\}$$
$$\subseteq \bigcup_{p \in K} G_p$$
$$\subseteq \bigcup_{p \in K} A$$
$$= A,$$

so $\bigcup_{p \in K} G_p \supseteq K$ is an open subset contained in A. By the definition of int(A),

$$K \subseteq \bigcup_{p \in K} G_p \subseteq \operatorname{int}(A).$$

Therefore, int(A) = K.

Definition 1.9: Exterior

The exterior of a set A, ext(A) is the interior of A^{\complement} . That is, ext(A) = $int(A^{\complement}).$

For any A, int(A) and ext(A) are disjoint.

Definition 1.10: Boundary

The boundary of A, b(A) is a set of all points in X not belonging to both int(A) and ext(A). That is,

$$\mathbf{b}(A) = X \setminus (\mathrm{int}(A) \cup \mathrm{ext}(A))$$

Example 13

Let $X = \{a, b, c, d, e\}$, and $\mathcal{T} = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$. If we let $A = \{b, c, d\}$, then

- $int(A) = \{c, d\}$

- ext(A) = {a}
 b(A) = {b, e}
 \$\bar{A}\$ = {b, c, d, e}
- $A' = \{b, c, d, e\}$

Remark.

 $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$ in general, but $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Theorem 1.6 $A = \operatorname{int}(A) \cup \operatorname{b}(A).$

Proof. Since $int(A) \cup b(A) = X - ext(A)$, it suffices to show that $\overline{A}^{\complement} = int(A^{\complement})$.

 $(\subseteq) \forall p \in \overline{A}^{\complement}, (p \notin \overline{A}) \exists$ an open neighborhood G of p such that $A \cap G = \emptyset$ by the (contraposition of the) corollary of theorem 1.4. Therefore, $G \subseteq A^{\complement}$, which implies that p is an interior point of A^{\complement} , so $p \in int(A^{\complement})$.

 $(\supseteq) \forall p \in int(A^{\complement})$, since p is an interior point of A^{\complement} , \exists an open neighborhood G of p such that $G \subseteq A^{\complement}$. Therefore, $A \cap G = \emptyset$, yielding $G \subseteq A^{\complement}$, so $p \in A^{\complement}$.

1.6 Neighborhoods and Neighborhood Systems -

Definition 1.11: Nowhere Dense

A set B is called **nowhere dense** if $int(\bar{B}) = \emptyset$.

Definition 1.12: Neighborhood System 💳

The class of all neighborhoods of $p \in X$ is called the **neighborhood system** of p, and denoted by \mathcal{N}_p .

Theorem 1.7: Neighborhood Axiom

Let $X \neq \emptyset.$ $N: x \in X \mapsto N(x):$ a nonempty collection of subsets of X satisfies

1. $A \in N(x) \to x \in A$

2. $A \subseteq B$ for some $A \in N(x) \to B \in N(x)$

3. $A, B \in N(x) \rightarrow A \cap B \in N(x)$

4. A, $B \in N(x)$ and $A \in N(y)$ for $\forall y \in B \to B \subseteq A$

Theorem 1.8: Kuratowski Closure Axiom

Let $X \neq \emptyset$. Consider $C : \mathcal{P}(X) \to \mathcal{P}(X)$. satisfying 1. $C(\emptyset) = \emptyset$ 2. $\forall A \subseteq X, A \subseteq C(A)$ 3. $\forall A \subseteq X, C(C(A)) = C(A)$ 4. $\forall A, B \subseteq X, C(A \cup B) = C(A) \cup C(B)$

Since $C(A) = \overline{A}$, the function that maps A to its closure satisfies the axioms above.

1.7 Sequences -

Definition 1.13: Convergence 💳

A sequence $\{a_n\}_{n\in\mathbb{N}} \subseteq X$ converges to some point $a \in X$ if for all open neighborhood G of $a, \exists N \in \mathbb{N}$ such that

 $n\geq N\rightarrow a_n\in G.$

Example 14

Let X be the discrete space. Then, $a_n \to a$ as $n \to \infty$ implies that for all open neighborhood G of $a, \exists n \in \mathbb{N}$ such that $a_n \in G$ if $n \geq N$. Set G as the one-point set $\{a\}$. Then, $a_i = a$ if i > n. This means since some time, a_n becomes a.

Example 15

Let X be the indiscrete space. Since G = X, every sequence in the indiscrete space converges, and its value may not unique.

1.8 Fine and Coarse Topologies -

Definition 1.14: Fine and Coarse

Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X. If $\mathcal{T}_1 \subseteq \mathcal{T}_2$, we say that \mathcal{T}_2 is **finer** than \mathcal{T}_1 , or \mathcal{T}_1 is **coarser** than \mathcal{T}_2 .

If $\mathcal{T}_1 \neq \mathcal{T}_2$, we say one is strictly fine (or coarse) than the other.

Definition 1.15: Comparable

We say \mathcal{T}_1 and \mathcal{T}_2 are **comparable** if one is a subset of other.

Example 16

Let \mathcal{T}_1 be the indiscrete topology and \mathcal{T}_2 the discrete topology. For any topology $\mathcal{T}, \mathcal{T}_1$ is coarser than \mathcal{T} , which is coarser than \mathcal{T}_2 .

1.9 Subspace Topologies -

Definition 1.16: Subspace Topology 💳

Let (X, \mathcal{T}) be a topological space. For all $Y \subseteq X$, the condition $\mathcal{T}_Y = \{G \cap Y \mid G \in \mathcal{T}\}$ is a topology on Y, which is called the **subspace topology** or the **relative topology**.

Then, (Y, \mathcal{T}_Y) is called a *subspace* of (X, \mathcal{T}) . We just call (Y, \mathcal{T}_Y) as Y, and (X, \mathcal{T}) as X.

Remark.

Y is a subspace of X if and only if $Y \subseteq X$ and for all open set G in Y, there exists an open set H in X such that $G = H \cap Y$.

Then, how do we know that \mathcal{T}_Y is actually a topology? We check the three conditions.

Topology 1

(1): $\emptyset \in \mathcal{T}_Y$ since $\emptyset \in \mathcal{T}$, and $Y \in \mathcal{T}_Y$ since $X \in \mathcal{T}$ and $X \cap Y = Y$. (2): $\forall G_i \in \mathcal{T}_Y, \exists H_i \in \mathcal{T}$ such that $G_i = H_i \cap Y$. Thus,

$$\bigcup_{i \in I} G_i = \bigcup_{i \in I} (H_i \cap Y)$$
$$= Y \cap \left(\bigcup_{i \in I} H_i\right) \in \mathcal{T}_Y.$$

(3): Similarly, we have

$$\bigcup_{i=1}^{n} G_{i} = \bigcup_{i=1}^{n} (H_{i} \cap Y)$$
$$= Y \cap \left(\bigcup_{i=1}^{n} H_{i}\right) \in \mathcal{T}_{Y}.$$

Remark.

A set may be open relative to a subspace but not open in the entire space.

2

Bases and Subbases

2.1 Basis

Definition 2.1: Basis

A collection of open sets $\mathcal B$ is called a **basis** of $\mathcal T$ if

- B ⊆ T
 ∀G ∈ T, ∃{B_i} ∈ B such that G = ⋃_iB_i.

Remark.

The second condition is equivalent to $\forall G \in \mathcal{T}$ and $\forall p \in G, \exists B_p \in \mathcal{B}$ such that $p \in B_p \subseteq G.$

Proof. (\Rightarrow) For all $G \in \mathcal{T}$, $\exists \{B_i\} \subseteq \mathcal{B}$ such that $G = \bigcup_i B_i$. Therefore, $\forall p \in G$, $\exists B_p \in \{B_i\} \subseteq \mathcal{B} \text{ such that } p \in B_p \subseteq \bigcup_i B_i = G.$

 (\Leftarrow) We have

$$G = \bigcup_{p \in G} \{p\}$$
$$= \bigcup_{p \in G} B_p$$
$$= \bigcup_{p \in G} G$$
$$= G$$

Therefore, $G = \bigcup_{p \in G} B_p$.

Example 1

The open intervals form a base for the topology on the line \mathbb{R} .

Example 2

The open rectangles in the plane \mathbb{R}^2 , bounded by sides parallel to the x-axis also form a base \mathcal{B} for the topology on \mathbb{R}^2 . For, let $G \subseteq \mathbb{R}^2$ be open and $p \in G$. There exists an open disk D_p centered at p with $p \in D_p \subseteq G$. Then any rectangle $B \in \mathcal{B}$ whose vertices lie on the boundary of D_p satisfies

$$p \in B \subseteq D_p \subseteq G.$$

Remark.

Given a collection \mathcal{B} of subsets of a set X, \mathcal{B} will not always be a basis for some topology on X. Other conditions are also needed.

Theorem 2.1

Let $\mathcal B$ be a nonempty collection of subsets of X. Then, $\mathcal B$ is a basis for some topology $\mathcal T$ if and only if

1.
$$\exists \{B_i\} \subseteq \mathcal{B} \text{ such that } X = \bigcup_i B_i$$

2. $\forall B_1, B_2 \in \mathcal{B}, B_1 \cap B_2 = \bigcup_i B_i.$

Proof. (\Rightarrow) Exercise.

 (\Leftarrow) Let $\mathcal{T} = \{\bigcup_i B_i \mid \{B_i\} \subseteq \mathcal{B}\}.$

We will check two things:

- \mathcal{T} is a topology on X
- \mathcal{B} is a basis of \mathcal{T} (trivial)

We only prove the first one.

We have $X \in \mathcal{T}$ by the first condition, and $\emptyset \in \mathcal{T}$ by setting $I = \emptyset$.

 $\forall G_i \in \mathcal{T} \text{ for } (i \in I), \exists \{B_i\}_{i \in I} \text{ such that } G_i = \bigcup_{i \in I} B_i.$ Therefore, $\bigcup_{i \in I} G_i = \bigcup_i (\bigcup_i B_i) \in \mathcal{T}$ by the definition of \mathcal{T} .

 $\forall G_1, G_2 \in \mathcal{T}, \exists \{B_{1_i}\} \text{ and } \{B_{2_j}\} \subseteq \mathcal{B} \text{ such that } G_1 = \bigcup_i B_{1_i} \text{ and } G_2 = \bigcup_j B_{2_j}.$ Then, $G_1 \cap G_2 = (\bigcup_i B_{1_i}) \cap \left(\bigcup_j B_{2_j}\right) = \bigcup_{i,j} \left(B_{1_i} \cap B_{2_j}\right).$ By the second condition, $\exists \{B_{ij_k}\} \subseteq \mathcal{B} \text{ such that } B_{1_i} \cap B_{2_j} = \bigcup_k B_{ij_k}.$ Therefore, $G_1 \cap G_2 = \bigcup_{i,j} \left(\bigcup_k B_{ij_k}\right) \in \mathcal{T}.$

Remark.

Let \mathcal{B}_1 and \mathcal{B}_2 be bases of (X, \mathcal{T}_1) and (X, \mathcal{T}_2) , respectively. If $\forall B \in \mathcal{B}_1$, $\exists \{B_i^*\} \subseteq \mathcal{B}_2$ such that

$$B = \bigcup_i B_i^*,$$

then \mathcal{T}_2 is finer than \mathcal{T}_1 , i.e. $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

Proof. $\forall G \in \mathcal{T}_1, \exists \{B_i\} \subseteq \mathcal{B}_1$ such that $G = \bigcup_i B_i. \forall B_i, \exists \{B_i^*\} \subseteq \mathcal{B}_2 \subseteq \mathcal{T}_2$ such that $B_i = \bigcup_i B_{ij}^*$. Therefore, $G = \bigcup_i \left(\bigcup_i B_{ij}^*\right) \in \mathcal{T}_2$. Now, if $\mathcal{B}_1 \subseteq \mathcal{B}_2$, then $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

Example 3 Let

$$\mathcal{B} = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

Show that \mathcal{B} is a basis for some topology \mathcal{T} in \mathbb{R} .

Solution The union of all intervals are \mathbb{R} . We now have $(a, b] \cap (c, d]$ either the empty set of another open-closed interval. Therefore, $\exists \{B_i\}$, and \mathcal{B} is a basis.

2.2 Subbasis

Definition 2.2: Subbasis

A collection ${\mathcal S}$ is called a ${\bf subbasis}$ of ${\mathcal T}$ if

1.
$$S \subseteq \mathcal{T}$$

2. $\left\{ \bigcap_{i=1}^{n} S_i \mid \{S_i\} \subseteq S \right\}$ is a basis of \mathcal{T} .

Example 4

The class \mathcal{S} of all infinite open intervals is a subbase for \mathbb{R} .

Example 5

The class S of all infinite open strips is a subbase for \mathbb{R}^2 .

Theorem 2.2

Let S be a nonempty collection of subsets of X. Then there exists a unique topology having S as a subbasis.

Proof. (Existence) Let
$$\mathcal{B} = \left\{ \bigcap_{i=1}^{n} S_i \mid \{S_i\} \subseteq S \right\}.$$

Claim. There exists a topology \mathcal{T} having \mathcal{B} as a basis.

First, $\exists \{B_i\} \subseteq \mathcal{B}$ such that

$$X = \bigcup_i B_i$$

Topology 1

since

$$\bigcap_{i \in \emptyset} S_i = X \in \mathcal{B}$$

Now, for all $B_1, B_2 \in \mathcal{B}, \exists \{B_i\} \subseteq \mathcal{B}$ such that

$$B_1 \cap B_2 = \bigcup_i B_i$$

since $\exists \{S_{1_i}\}$ and $\{S_{2_j}\} \subseteq S$ such that

$$B_1 = \bigcap_{i=1}^n S_{1_i}$$
 and $B_2 = \bigcap_{j=1}^m S_{2_j}$,

 \mathbf{SO}

$$B_1 \cap B_2 = \left(\bigcap_{i=1}^n S_{1_i}\right) \cap \left(\bigcap_{j=1}^m S_{2_j}\right) \in \mathcal{B}$$

Therefore, there exists a topology \mathcal{T} having \mathcal{B} as a basis by the previous theorem. (Uniqueness) Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies generated by \mathcal{B} .

Claim. $\mathcal{T}_1 = \mathcal{T}_2$.

Since $\forall B \in \mathcal{B}, \exists \{B_i^*\} \subseteq \mathcal{B}$ such that

$$B = \bigcup_i B_i^*$$

because $B = \bigcup_i B_i^*$ where $\{B_i^*\} = \{B\}$. Then, by the remark above, \mathcal{T}_1 is finer than \mathcal{T}_2 . But since \mathcal{T}_2 is also finer than $\mathcal{T}_1, \mathcal{T}_1 = \mathcal{T}_2$.

Example 6

Let $S = \{\{a\}, \{a, c\}\}$. Then,

$$\mathcal{B} = \left\{ \bigcap_{i=1}^{n} S_i \mid \{S_i\} \subseteq \mathcal{S} \right\}$$
$$= \left\{ X, \{a\}, \{a, c\} \right\}.$$

The topology generated by ${\mathcal B}$ is

$$\mathcal{T} = \left\{ \emptyset, X, \{a\}, \{a, c\} \right\},\$$

and this is the unique topology having ${\mathcal S}$ as a subbasis.

Theorem 2.3

Let S be a class of subsets of a nonempty set X. Then the topology \mathcal{T} on X generated by S is the intersection of all topologies on X that contain S.

2.3 Local Bases

Definition 2.3: Local Basis

A local basis \mathcal{B}_p at $p \in X$ is a collection of subsets of X satisfying

- 1. $\forall B \in \mathcal{B}_p, B$ is an open neighborhood of p
- 2. For all open neighborhood G of p, $\exists B_p \in \mathcal{B}_p$ such that $p \in B_p \subseteq G$.

Example 7

Let $X = \{a, b, c, d\}$, and $\mathcal{T} = \{\emptyset, X, \{a, b\}, \{a, b, d\}\}$. Then the local bases of a can be

$$\mathcal{B}_a = \{X, \{a, b\}, \{a, b, d\}\} \text{ or } \{\{a, b\}\}.$$

Remark.

For a point p, the local basis \mathcal{B}_p could not be unique.

Theorem 2.4

Let $\{a_n\} \subseteq X$ be a sequence in X and $p \in X$. Then, $a_n \to p$ as $n \to \infty$ if and only if $\forall B \in \mathcal{B}_i, \exists N \in \mathbb{N}$ such that $a_n \in B$ for all $n \ge N$.

Proof. (\Rightarrow) Let $\mathcal{B}_p = \{B \in \mathcal{B} \mid p \in B\}$. Then by definition, $\forall B \in \mathcal{B}_p$, B is an open neighborhood of p. Therefore, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then $a_n \in B$.

(\Leftarrow) For any open neighborhood G of p, by the definition of a local basis, $\exists B \in \mathcal{B}_p$ such that $B \subseteq G$. Therefore, $\exists N \in \mathbb{N}$ such that if $n \ge N$, then $a_n \in B \subseteq G$.

3

Continuous Functions

Definition 3.1: Continuous

A function is continuous on X if for all open set G in Y, $f^{-1}(G)$ is open in X.

Lemma

Let $\mathcal B$ be a basis, and $\mathcal S$ be a subbasis. The continuity is equivalent to:

- 1. $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is continuous at every $p \in X$ if for all open neighborhood G of f(p) in Y, $f^{-1}(G)$ is a neighborhood of p in X.
- 2. $\forall B \in \mathcal{B}, f^{-1}(B)$ is open in X
- 3. $\forall S \in S, f^{-1}(S)$ is open in X
- 4. For all closed set F in Y, $f^{-1}(F)$ is closed in X.
- 5. For all subset $B \subseteq Y$, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$
- 6. For all subset $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$ (or $\forall p \in \overline{A}, f(p) \in \overline{f(A)}$)
- 7. For all subset $B \subseteq Y$, $f^{-1}(int(B)) \subseteq \int (f^{-1}(B))$.

Proof. (1) (\Rightarrow) For all open neighborhood G of f(p), $f^{-1}(G)$ is open in X and $p \in f^{-1}(G)$, i.e. $f^{-1}(G)$ is an open neighborhood of p in X.

(\Leftarrow) For all open set G in Y, $f^{-1}(G)$ is a neighborhood of p in X since G is an open neighborhood of f(p). Then there exists an open set H_p on X such that $p \in H_p \subseteq f^{-1}(G)$. Therefore,

$$f^{-1}(G) = \bigcup_{p \in f^{-1}(G)} \{p\}$$
$$\subseteq \bigcup_{p \in f^{-1}(G)} H_p$$
$$\subseteq \bigcup_{p \in f^{-1}(G)} f^{-1}(G)$$
$$= f^{-1}(G),$$

yielding $f^{-1}(G) = \bigcup_{p \in f^{-1}(G)} H_p$, so $f^{-1}(G)$ is open in X.

(2) (\Rightarrow) Trivial because $\forall B \in \mathcal{B}, B$ is open in Y.

Topology 1

(⇐) For all open set G in Y, Since \mathcal{B} is a basis of Y, $\exists \{B_i\} \subseteq \mathcal{B}$ such that (fill)

(3) Exercise.

(4) (\Rightarrow) For all closed F in Y, since F^{\complement} is open in Y, $f^{-1}(F^{\complement}) = \{f^{-1}(F)\}^{\complement}$ is open in X. Therefore, $f^{-1}(F)$ is closed.

(\Leftarrow) For all open set G in Y, G^{\complement} is closed in X. Then, $f^{-1}(G^{\complement}) = \{f^{-1}(G)\}^{\complement}$ is closed in X. Therefore, $f^{-1}(G)$ is open in X.

(5) (\Rightarrow) For all subset $B \subseteq Y$, by the definition of closure, $B \subseteq \overline{B}$, which gives

$$f^{-1}(B) \subseteq f^{-1}(\bar{B}).$$

By (4), $f^{-1}(\bar{B})$ is closed in X, so $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$. (\Leftarrow) For all closed set F in Y, $\overline{f^{-1}(F)} \subseteq f^{-1}(\bar{F}) = f^{-1}(F)$. Therefore, $f^{-1}(F) = f^{-1}(F)$, so $f^{-1}(F)$ is closed in X.

(6) (\Rightarrow) For all subset $A \subseteq X$, since $f(A) \subseteq \overline{f(A)}$,

$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)}).$$

By (4), $f^{-1}(\overline{f(A)})$ is closed in X and thus $\overline{A} \subseteq f^{-1}(\overline{f(A)})$, yielding $f(\overline{A}) \subseteq \overline{f(A)}$. (\Leftarrow) For all closed set F in Y, letting $A = f^{-1}(F)$, by (6),

$$f(\bar{A}) \subseteq \overline{f(A)} = \bar{F} = F.$$

Then we have $A \subseteq f^{-1}(f(\bar{A})) \subseteq f^{-1}(F) = A$. Since $A \subseteq \bar{A}$, $A = \bar{A}$, and $A = f^{-1}(F)$ is closed.

(7) (\Rightarrow) For all subset $B \subseteq Y$, since $\operatorname{int}(B) \subseteq B$, $f^{-1}(\operatorname{int}(B)) \subseteq f^{-1}(B)$ where $f^{-1}(\operatorname{int}(B))$ is open in X. Therefore, $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{int}(f^{-1}(B))$.

(\Leftarrow) For all open set G in Y, by (7),

$$f^{-1}(G) = f^{-1}(int(G)) \subseteq int(f^{-1}(G)).$$

By definition of an interior, $\operatorname{int}(f^{-1}(G)) \subseteq f^{-1}(G)$, i.e. $f^{-1}(G) = \operatorname{int}(f^{-1}(G))$.

Definition 3.2: Open and Closed Mapping

- A function $f: X \to Y$ is called **open** if for all open set $H \in X$, f(H) is open in Y.
- A function $f : X \to Y$ is called **closed** if for all closed set F in X, f(F) is closed in Y.

Example 1

Let X be a discrete space. Then every function from X to Y is continuous.

Example 2

Let Y be a discrete space. Then every function from X and Y is an open and close d mapping.

Theorem 3.1

Let $f: X \to Y$. Then,

- 1. f is a closed mapping if and only if $\forall A \subseteq X, \ \overline{f(A)} \subseteq f(\overline{A})$.
- 2. f is an open mapping if and only if $\forall B \subseteq X$, $f(int(B)) \subseteq int(f(B))$.

Proof. (1) (\Rightarrow) For any subset $A \subseteq X$, since $A \subseteq \overline{A}$, $f(A) \subseteq f(\overline{A})$. Since f is a closed mapping, $f(\overline{A})$ is closed in Y. Therefore, by definition of a closure, $\overline{f(A)} \subseteq f(\overline{A}).$

 (\Leftarrow) For any closed set F in X, by assumption, $\overline{f(F)} \subseteq f(\overline{F}) = f(F)$. Sine $f(F) \subseteq \overline{f(F)}, f(F) = \overline{f(F)}, \text{ and } f(F) \text{ is closed in } Y.$

(2) Exercise.

Definition 3.3: Homeomorphism

A function $f: X \to Y$ is called a **homeomorphism** if

- f is continuous on X
- f is an open mapping
- f is invertible (i.e. f is bijective).

The first two conditions are called *bicontinuous*. If there exists a homeomorphism between X and Y, then we say that X is *homeomorphic* to Y.

Definition 3.4: Topological

Let X satisfy the property P. We say that P is **topological** if every Y homeomorphic to X satisfies the property P.

Note X is called **disconnected** if there exists open sets G and H such that

- $G, H \neq \emptyset$ $G \cap H = \emptyset$
- $G \cup H = X$

Example 3

The connectedness is a topological property.

Assume that X is disconnected and Y is an arbitrary topological space homeomorphic to X. Since X is disconnected, there exist open sets G and H in X such that

- $G, H \neq \emptyset$
- $G \cap H = \emptyset$
- $G \cup H = X$.

On the other hand, there exists a homeomorphism $f: X \to Y$. Then we have

- f(G) and f(H) are open in Y (since f is open)
- $f(G), f(H) \neq \emptyset$ (since $G, H \neq \emptyset$)
- $f(G) \cap f(H) = \emptyset$ (since f is injective)
- $f(G) \cup f(H) = Y$ (since f is surjective)

Therefore, \boldsymbol{Y} is disconnected, and connectedness (and disconnectedness) is a topological property.

Definition 3.5: Sequentially Continuous

A function $f : X \to Y$ is called **sequentially continuous** at $p \in X$ if $\forall \{a_n\} \subseteq X$ converging to $p, f(a_n) \to f(p)$ as $n \to \infty$.

Theorem 3.2

If a function $f: X \to Y$ is continuous at $p \in X$, then f is sequentially continuous at $p \in X$.

Proof. By the definition of continuous, for any open set G of f(p) in Y, $f^{-1}(G)$ is a neighborhood of p in X, i.e. there exists an open set H of p such that $p \in H \subseteq f^{-1}(G)$. For $H, \exists N \in \mathbb{N}$ such that if $n \geq N$, then $a_n \in H$. This $f(a_n) \in f(H)$ for all $n \geq N$, which implies that $f(a_n) \to f(p)$ as $n \to \infty$.

Remark.

The converse of the theorem is not true in general. That is, f may not be continuous at $p \in X$ even f is sequentially continuous at $p \in X$.

For example, consider (X, \mathcal{T}) where \mathcal{T} is a cocountable topology. In (X, \mathcal{T}) , $a_n \to p$ as $n \to \infty$ implies that $\exists N \in \mathbb{N}$ such that if $n \ge N$, then $a_n = p$. That is, for any open neighborhood G of $p, \exists N \in \mathbb{N}$ such that if $n \ge N$, then $a_n \in G$,

i.e. $\{p, a_N, a_{N+1}, \dots, \} \subseteq G$. Since G^{\complement} is countable, $G^{\complement} \cup (\{a_N, a_{N+1}, \dots\} \setminus \{p\})$ is countable, so $(G - \{a_N, a_{N+1}, \dots\}) \cup \{p\}$ is an open neighborhood of p. Let this neighborhood be H. For $H, \exists N_* \in \mathbb{N}$ such that if $n \geq N_*$, then $a_n \in H$. Letting $N' = \max\{N, N_*\}$, we see that $a_n \in G$ and $a_n \in H$ for all $n \geq N'$, which implies that $a_n = p$ for all $n \geq N'$.

4 Topology on the Line and Plane

The real line, \mathbb{R} , is an archimedian ordered field.

4.1 Open Sets in \mathbb{R} —

Definition 4.1: Interior Point

Let A be a set of real numbers. A point $p \in A$ is an **interior point** of A if there exists some open interval S_p such that

 $p \in S_p \subseteq A.$

Definition 4.2: Open Set

The set A is open if each of its points is an interior point.

Example 1

An open interval (a, b), where a < b, is an open set.

Example 2

The real line \mathbb{R} and the empty set \emptyset is also an open set.

Example 3

The closed interval [a, b], where a < b, is not an open set, because a and b are not interior points.

Theorem 4.1

The union of any number of open sets in $\mathbb R$ is open.

Theorem 4.2

The intersection of any finite number of open sets in $\mathbb R$ is open.

Example 4

Consider the class of open intervals

$$\left\{A_n = \left\{-\frac{1}{n}, \frac{1}{n}\right\} : n \in \mathbb{N}\right\}.$$

Then the infinite intersection $\bigcap_{n=1}^{\infty} A_n = \{0\}$, which is not an open set.

Remark.

The intersection of any number of open sets in $\mathbb R$ need not be open.

4.2 Accumulation Points -

Definition 4.3: Accumulation Point

A point $p \in \mathbb{R}$ is an **accumulation point** of A if for all open set G containing p,

 $A\cap (G\setminus \{p\})\neq \emptyset.$

Example 5

Let $A = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$. The point 0 is an accumulation point of A.

Example 6

Every real number $p \in \mathbb{R}$ is a limit point of \mathbb{Q} .

Theorem 4.3: Bolzano-Weierstrass

Let A be a bounded, infinite set of real numbers. Then A has at least one accumulation point.

4.3 Closed Sets -

Definition 4.4: Closed Sets

A subset A of \mathbb{R} is closed if and only if A^{\complement} is open.

Theorem 4.4

subset A of $\mathbb R$ is closed if and only if A contains each of its accumulation points.

Example 7

The closed interval [a,b] is a closed set since its complement, $(-\infty,a)\cup(b,\infty)$ is an open set.

Example 8

The set $A = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$ is not closed since 0 is an accumulation point of A not belonging to A.

Remark.

 α

Sets may be neither open not closed. For example, consider the half-open interval (a, b].

4.4 Compactness —

Definition 4.5: Open Cover

A collection $\{O_{\alpha}\}$ of open sets is called an **open cover** of a set S if $S \subseteq \bigcup O_{\alpha}$.

Definition 4.6: Compact

A set S is $\mathbf{compact}$ if every open cover of S is covered by a union of a finite subcover.

Theorem 4.5: Heine-Borel

Every closed and bounded interval [a, b] is compact.

Example 9

Let $\mathcal{G} = \left\{ G_n = \left(\frac{1}{n+2}, \frac{1}{n}\right) : n \in \mathbb{N} \right\}$. Then, \mathcal{G} is an open cover of A = (0, 1), but \mathcal{G} does not have a finite subcover.

4.5 Sequences

Definition 4.7: Sequence —

A **sequence** is a function whose domain is \mathbb{N} .

We call s(n) or s_n the *n*th term of the sequence. A sequence is called to be bounded if its range is a bounded set.

Definition 4.8: Convergence

A sequence $\langle a_n \rangle$ converges to $b \in \mathbb{R}$ if $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that

 $n \ge n_0 \to |a_n - b| < \epsilon.$

We write $\lim_{n \to \infty} a_n = b$, $\lim a_n = b$, or $a_n \to b$.

Note The sequence $\langle a_n \rangle$ converges to b if every open set containing b contains all but a finite number of terms of $\langle a_n \rangle$.

4.6 Subsequences -

Definition 4.9: Subsequence —

If $\langle i_n \rangle$ is a sequence of positive integers such that $i_1 < i_2 < \cdots,$ then the sequence

 $\langle a_{i_1}, a_{i_2}, \cdots \rangle$

is called a **subsequence** of $\langle a_n \rangle$.

Example 10

Let $\langle a_n \rangle = \left\langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots \right\rangle$. The sequence $\left\langle 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots \right\rangle$ is a subsequence of $\langle a_n \rangle$, but $\left\langle 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \cdots \right\rangle$ is not.

Theorem 4.6

Every bounded sequence of real numbers has a convergent subsequence.

4.7 Cauchy Sequences

Definition 4.10: Cauchy Sequences -

A sequence $\langle a_n \rangle$ is called a **Cauchy sequence** if $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that

 $m, n \ge n_0 \to |a_m - a_n| < \epsilon.$

Example 11

If $\langle a_n \rangle$ is a sequence of integers, then it is Cauchy if it is of the form $\langle a_1, a_2, \cdots, a_{n_0}, b, b, b, \cdots \rangle$.

Lemma

Every convergent sequence is Cauchy.

Definition 4.11: Completeness

A set A is **complete** if every Cauchy sequence $\langle a_n \in A \rangle$ converges to a point in A.

Example 12

The set of integers is complete by the example above.

Example 13

The set of rational numbers is not complete. For instance, a sequence $(1, 1.4, 1.41, 1.414, \cdots)$ converges to $\sqrt{2} \notin \mathbb{Q}$.

Theorem 4.7: Cauchy

Every Cauchy sequence of real numbers converges to a real number.

Note The theorem above shows that \mathbb{R} is complete.