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1
Motivation

1.1 Fermat Pseudoprimes
We all know the Fermat’s little theorem.

Theorem 1.1: Fermat’s Little Theorem

If p is a prime and p ∤ a, then

ap−1 ≡ 1 (mod p).

Does the converse work? That is, if we have an integer a and positive integer n

such that an−1 ≡ 1 (mod n), then is n prime? This test of checking if a given
integer is a prime is called the Fermat test. This would be good algorithm to find
prime numbers with calculating too much, if the converse was true.

Sadly, this does not hold. We have

2340 ≡ 1 (mod 341),

but 341 is not prime as 341 = 11 · 31.

Definition 1.1: Fermat Pseudoprimes

A composite number n is a Fermat pseudoprime of base a if

an−1 ≡ 1 (mod n).

So 341 is a Fermat pseudoprime of base 2.

There are not many pseudoprimes (as the smallest one of base 2 is 341). Even if
we know that 2340 ≡ 1 (mod n), changing the base will give a different number.
For example, 3340 ≡ 56 (mod 341). This clearly shows that 341 is not prime. So
341 passes the Fermat test of base 2, it cannot pass the Fermat test of base 3.

But what if...
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1.2 Carmichael Numbers
Definition 1.2: Carmichael Numbers

A Carmichael number is a composite number n which satisfies

an−1 ≡ 1 (mod n)

for all integers a such that gcd(a, n) = 1.

Carmichael numbers will pass the Fermat tests of any bases!!

How do we find Carmichael numbers? There is a criterion for this.

Theorem 1.2: Korselt’s Criterion

A positive compositie integer n is a Carmichael number if and only if n is
squarefree, and for all prime divisors p | n, p− 1 | n− 1.

Proof. Assume n is a Carmichael number. If n is not squarefree, we have n = pkn′

where k ≥ 2 and (p, n′) = 1. By Chinese remainder theorem, there is a unique
a ∈ Z/nZ such that a ≡ 1 + p (mod pk) and a ≡ 1 (mod n′). Since n is a
Carmichael number, an−1 ≡ 1 (mod n). We have (1 + p)n−1 ≡ 1 + (n − 1)p ≡ 1

(mod p2), so 1− p ≡ 1 (mod p2), a contradiction. Therefore k = 1.

Since n is squarefree, for any prime p | n, p and n/p are coprime. Since there
is a primitive root modulo any prime, choose one primitive root b ∈ Z. By the
Chinese remainder theorem, there is a unique a ∈ Z/nZ such that a ≡ b (mod p)

and a ≡ 1 (mod n/p), so gcd(a, n) = 1. Then an−1 ≡ (mod n), and bn−1 ≡ 1

(mod p). Since b has order p− 1, p− 1 | n− 1.

Now assume n is squarefree and (p− 1) | (n− 1) whenever p | n. If a ∈ Z satisfies
gcd(a, n) = 1 then for each prime p dividing n we have gcd(a, p) = 1, so ap−1 ≡ 1

(mod p). Since p− 1 | n− 1, we get an−1 ≡ (mod p). By the Chinese remainder
theorem, the result follows.

Corollary

All Carmichael numbers are odd.

Proof. Suppose there is a Carmichael number n ≥ 2 that is even. Since n is
squarefree, n/2 is odd, thus n should have an odd factor, call it p. Then (p− 1) |
(n− 1) gives even | odd, which is impossible.

1.3 Wilson’s Theorem
We will now look at Wilson’s theorem, which can act as another criterion of finding
primes.
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Theorem 1.3: Wilson’s Theorem

A positive integer n is prime if and only if

(n− 1)! ≡ −1 (mod n).

So if we want to know whether a given positive integer is prime, we can use Wilson’s
theorem. Wilson’s theorem is a good criterion, using the multiplicative condition.

2
Giuga’s Conjecture

2.1 Giuga’s Conjecture
Wilson’s theorem used the multiplicative condition, but we could also think whether
there is a criterion using the additive condition. We introduce the Giuga’s conjec-
ture.

Conjecture 1: Giuga’s Conjecture

The integer n is a prime number if and only if

n−1∑
k=1

kn−1 ≡ −1 (mod n).

One side is easy to prove. If p is prime, then kp−1 ≡ 1 (mod p) for all k = 1, 2,

. . . , p − 1, so
p−1∑
k=1

kp−1 ≡ −1 (mod p). However, the other side remains unsolved

until this day.

It has been shown if there is a composite number n satisfies the formula above,
then it is at least 13, 800 digits, which gives evidence that the statement is true.

2.2 Giuga Numbers
Definition 2.1: Giuga Numbers

A Giuga number is a composite number n such that for each of its distinct
prime factors pi, we have

pi |
(
n

pi
− 1

)
.

For example, 30 and 858 are Giuga numbers. The first few Giuga numbers are:
30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, ...

We can observe that only squarefree integers could be Giuga numbers.
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There are several equivalent formations of the definition of Giuga’s number, and
the most frequent one is the following theorem.

Theorem 2.1

A positive integer n is a Giuga number if and only if∑
p|n

1

p
−
∏
p|n

1

p
∈ N.

Proof. (⇒) Suppose n is a Giuga number. Then since n is squarefree,
∏

p|n
1
p = 1

n .
Consider

n
∑
p|n

1

p
− 1.

For any prime pi, divide the expression to

n
∑
p|n
p ̸=pi

1

p
+

n

pi
− 1.

Since n is squarefree, pi | n
p for pi ̸= p. Furtherfore, we have pi | n

pi
− 1, so

pi | n
∑
p|n

1

p
− 1. Therefore n | n

∑
p|n

1

p
− n, and

∑
p|n

1

p
−
∏
p|n

1

p
∈ N.

(⇐) This side of the proof is omitted.

How does Giuga numbers related to Giuga’s conjecture?

Lemma

Let p be a prime. Then for any positive integer n,

p−1∑
k=1

kn−1 ≡

{
−1 (mod p) if (p− 1) | (n− 1)

0 (mod p) it (p− 1) ∤ (n− 1)
.

Proof. Suppose (p − 1) | (n − 1). Then for k = 1, 2, . . . , p − 1, we have p ∤ k, so
kp−1 ≡ 1 (mod p). This gives

p−1∑
k=1

kn−1 ≡ 1 + 1 + · · ·+ 1 = p− 1 ≡ −1 (mod p).

Now, suppose (p − 1) ∤ (n − 1). Take a primitive root g mod p. Then since
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{1, 2, . . . , p− 1} = {g, g2, . . . , gp−1}, we have

p−1∑
k=1

kn−1 = gn−1 + g2n−2 + · · ·+ g(p−1)(n−1)

= gn−1 · g
(p−1)(n−1) − 1

gn−1 − 1

≡ 0 (mod p)

since gp−1 ≡ 1 (mod p).

Theorem 2.2

A composite number satisfies the Giuga’s condition if and only if it is both
a Carmichael number and a Giuga number.

Proof. (⇒) Suppose a composite number satisfies the Giuga’s condition. Take a
prime p, and let n = pq (note that q is not necessarily coprime with p, that is n

may not be squarefree). Then we have

n−1∑
k=1

kn−1 =
∑

1≤k≤n−1
p∤n

kn−1 +
∑

1≤k≤n−1
p|n

kn−1

≡ q
∑

1≤k≤n−1
p∤n

kn−1 (mod p)

=

{
−q (mod p) if (p− 1) | (n− 1)

0 (mod p) it (p− 1) ∤ (n− 1)
.

This gives that −q ≡ −1 (mod p) and (p− 1) | (n− 1). Since q ≡ 1 (mod p) and
q = n/p, we have p | n

p
− 1, which is the Giuga’s condition.

Finally, suppose n is not squarefree, so we have some prime pi | n such that p2i | n.
Then since n is Giuga, pi |

n

pi
− 1. But pi |

n

pi
, which is a contradiction to that

pi is prime. Therefore, since n is squarefree and (p − 1) | (n − 1) for every prime
p | n, n is Carmichael.

(⇐) Suppose a composite number is both Carmichael and Giuga. Then we can
write n = p1p2 · · · pk (since all Carmichael numbers are squarefree). We claim that

n−1∑
k=1

kn−1 ≡ −1 (mod pi)
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for all primes pi | n. Since n is Carmichael, pi − 1 | n− 1. We have

n−1∑
k=1

kn−1 =
∑

1≤k≤n−1
pi∤n

kn−1 +
∑

1≤k≤n−1
pi|n

kn−1

≡ 1 ·
(
n− n

pi

)
(mod pi)

≡
(
n− n

pi

)
+

(
n

pi
− 1

)
(mod pi)

≡ −1 (mod pi).

The result follows by Chinese remainder theorem.

2.3 Arithmetic Derivatives
Theorem 2.3: Arithmetic Derivative

The arithmetic derivative is defined as the function D : Z → Z by

• D(1) = D(0) = 0

• D(p) = 1 for primes p

• D(ab) = aD(b) + bD(a) for any a, b ∈ N (Leibniz rule)

• D(−n) = D(n).

We also use the notation D(n) = n′.

Lemma : Power Rule

If p is a prime, then D(pk) = kpk−1.

Proof. We use Induction. If k = 1, then D(p1) = 1·p0 = 1. Suppose D(pi) = ipi−1.
Then D(pi+1) = pD(pi) + piD(p) = p · ipi−1 + pi = (i+ 1)pi, so we’re done.

Theorem 2.4

If n = pe11 pe22 · · · perr , then

n′ = n

r∑
i=1

ei
pi

.

Proof. We use induction on distinct prime factors of n. If n = pe11 , then n′ =

n · e1
p1

= e1p
e1−1. Suppose n = pe11 pe22 · · · pejj , and n′ = n

j∑
i=1

ei
pi

. Then if n =
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pe11 pe22 · · · pejj pe
j+1

j+1 , we have

n′ = p
ej+1

j+1 D(pe11 pe22 · · · pejj ) + pe11 pe22 · · · pejj D(p
ej+1

j+1 )

= p
ej+1

j+1 · pe11 pe22 · · · pejj
j∑

i=1

ei
pi

+ pe11 pe22 · · · pejj · ej+1p
ej+1−1

= pe11 pe22 · · · pejj pe
j+1

j+1

(
j∑

i=1

ei
pi

+
ej+1

pj+1

)

= pe11 pe22 · · · pejj pe
j+1

j+1

j+1∑
i=1

ei
pi

.

Corollary

If n = p1p2 · · · pr is a squarefree number, then

n′ = n

r∑
i=1

1

pi
.

2.4 Arithmetic Derivatives and Giuga Numbers
Theorem 2.5

A positive integer is a Giuga number if and only if it satisfies n′ = an+1 for
some a ∈ N.

Proof. Suppose n is a Giuga number, then let
∑
p|n

1

p
−
∏
p|n

1

p
= a ∈ N. Since n is

squarefree, we have

n

∑
p|n

1

p
−
∏
p|n

1

p

 = n
∑
p|n

1

p
− 1

= n′ − 1

= an.

Conversely, suppose n satisfies n′ = an+ 1 for some a ∈ N. Let n = pe11 pe22 · · · perr .
Then we have

n′ = n

r∑
i=1

ei
pi

= an+ 1.

Now we prove that n is squarefree. Suppose there is a prime p | n such that p2 | n.
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Then p | n′, but p ∤ an+ 1. Therefore all eis are 1, and we have

n′ = n

r∑
i=1

1

pi
= an+ 1.

Rearranging gives

n

r∑
i=1

1

pi
− 1 = an

r∑
i=1

1

pi
− 1

n
= a

∑
p|n

1

p
−
∏
p|n

1

p
= a

with a ∈ N.

Why do these matter? The arithmetic derivative turns additive properties of num-
bers into equations involving a derivative-like operation. The arithmetic derivative
have some analogue to arithmetical functions. For example, D(n) = 0 only for
n = 0 and n = 1, and D(n) = n if and only if n is perfect. Arithmetic derivatives
also connects to differential algebra. Even if its rephrasing, this gives new ways to
approach the problem.

3
Agoh’s Conjecture

3.1 Bernoulli Numbers and Bernoulli Polynomials
Definition 3.1: Bernoulli Numbers

The Bernoulli numbers Bk, where k is a nonnegative integer, is defined by
the generating function

x

ex − 1
=
∑
k≥0

Bk
xk

k!
.

Some numerical values are:

• B0 = 1

• B1 = −1/2

• B2 = 1/6

• B3 = 0
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• B4 = −1/30

• B5 = 0

• B6 = −1/42

Definition 3.2: Bernoulli Polynomials

The Bernoulli polynomials Bk(x), where k is a nonnegative integer, is defined
by the generating function

text

et − 1
=
∑
k≥0

Bk(x)
tk

k!
.

The first Bernoulli polynomials are:

• B0(x) = 1

• B1(x) = x− 1
2

• B2(x) = x2 − x+ 1
6

• B3(x) = x3 − 3
2x

2 + 1
2x.

Two important properties will be needed later.

• Letting x = 0 on the generating function of Bernoulli polynomials, we get
Bn(0) = Bn.

• Taking
∂

∂x
on the generating function of Bernoulli polynomials, we get

B′
n(x) = nBn−1(x).

3.2 Agoh’s Conjecture
Conjecture 2: Agoh’s Conjecture

The integer p is a prime number if and only if

pBp−1 ≡ −1 (mod p).

where Bn is the nth Bernoulli number.

This conjecture is actually equivalent to the Giuga’s conjecture, so they are called
in Agoh-Giuga conjecture. In later sections, we will prove that the two statements
are equal.
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3.3 Stirling Numbers of the Second Kind
Define Sn(m) =

∑m
k=1 k

n.

Definition 3.3: Stirling Numbers of the Second Kind

The Stirling numbers of the second kind, denoted S(n, k) or
{
n

k

}
, is the

number of ways to partition a set of n objects into k nonempty subsets.

Definition 3.4: Falling Factorials

If x is a real number, for a positive integer n, define the falling factorial
(x)n = x(x− 1) · · · (x− n+ 1).

Theorem 3.1

xn =

n∑
k=0

{
n

k

}
(x)k.

Proof. Proof omitted.

Definition 3.5: Generalized Binomial Coefficients

If x is a real number, then for a positive integer k, the generalized binomial

coeffcient
(
x

k

)
is defined as

(
x

k

)
=

x(x− 1) · · · (x− k + 1)

k!
=

(x)k
k!

.

Lemma

We have the following forward difference relation: Bn(x+1)−Bn(x) = nxn−1.

Proof. Since
tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, substituting x+ 1 gives

tet(x+1)

et − 1
=

∞∑
n=0

Bn(x+ 1)
tn

n!
.
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Subtracting the first expression from the second expression gives

tet(x+1)

et − 1
− tetx

et − 1
=

∞∑
n=0

(
Bn(x+ 1)−Bn(x)

) tn
n!

tetx
et − 1

et − 1
=

∞∑
n=0

(
Bn(x+ 1)−Bn(x)

) tn
n!

.

So the left-hand side is tetx, which has Taylor series

tetx =

∞∑
n=1

xn−1tn

(n− 1)!
=

∞∑
n=1

nxn−1 · t
n

n!
.

Therefore, we should have B0(x+1)−B0(x) = 0, and Bn(x+1)−Bn(x) = nxn−1

for n ≥ 1, which gives Bn(x+ 1)−Bn(x) = nxn−1 for n ≥ 0.

Theorem 3.2

Let x be a real number and n be a positive integer. Then

Sn(x) =

n∑
k=1

k!

{
n

k

}(
x

k + 1

)
and Bn =

n∑
k=1

k!

{
n

k

}
(−1)k

k + 1
.

Proof. If m is a positive integer, then

Sn(m) =

m−1∑
i=1

in

=

m−1∑
i=1

n∑
k=0

{
n

k

}
(i)n

=

m−1∑
i=1

n∑
k=0

k!

{
n

k

}(
i

k

)

=

n∑
k=1

k!

{
n

k

}m−1∑
i=1

(
i

k

)

=

n∑
k=1

k!

{
n

k

}(
m

k + 1

)
.

So Sn(m) is a polynomial of degree n+ 1, so Sn(x) =

n∑
k=1

k!

{
n

k

}(
x

k + 1

)
. Since
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Sn(0) = 0 and
(−1

k

)
= (−1)k, we have

S′
n(0) = lim

x→0

Sn(x)

x

= lim
x→0

n∑
k=1

k!

{
n

k

}(
m

k + 1

)(
x− 1

k

)

=

n∑
k=1

k!

{
n

k

}(
m

k + 1

)
(−1)k

k + 1
.

Also,

S′
n(0) =

d

dx

(
Bn+1(x)−Bn+1

n+ 1

) ∣∣∣∣
x=0

= Bn(0) = Bn,

thus Bn =

n∑
k=1

k!

{
n

k

}(
m

k + 1

)
(−1)k

k + 1
.

3.4 Equivalence of Two Conjectures
Lemma

We have Sn(m) =
Bn+1(m+ 1)−Bn+1(0)

n+ 1
.

Proof. We write the right-hand side as

Bn+1(m+ 1)−Bn+1(0)

n+ 1
=

∑m
k=0

(
Bn+1(k + 1)−Bn+1(k)

)
n+ 1

Then Bn+1(k + 1)−Bn+1(k) = (n+ 1)kn by the previous lemma, we have

Bn+1(m+ 1)−Bn+1(0)

n+ 1
=

∑m
k=0(n+ 1)kn

n+ 1

=

m∑
k=0

kn

= Sn(m).

Theorem 3.3

Sn−1(n− 1) ≡ nBn−1 (mod n).
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Proof. By the lemma above, we have

Sn−1(n− 1) =
Bn(n)−Bn(0)

n

=

∑n
k=0

(
n
k

)
Bkn

n−k −Bn

n

=

∑n−1
k=0

(
n
k

)
Bkn

n−k +Bn −Bn

n

=

∑n−2
k=0

(
n
k

)
Bkn

n−k

n
+ nBn−1.

We now need to show that n2 |
∑n−2

k=0

(
n
k

)
Bkn

n−k for all k = 0, 1, . . . , n−2, which
we assume for this handout. The proof uses Stirling numbers of the second kind
and theorem 3.2. Therefore, we have Sn−1(n− 1) ≡ nBn−1 (mod n).

4
Related Open Problems

We state some related conjectures that has not been proved.

Conjecture 3: Odd Giuga Numbers

There are no odd Giuga numbers.

This immediately proves Giuga’s conjecture, since any counterexample to the
Giuga’s conjecture should be Carmichael, which is odd.

Conjecture 4: Lava’s Conjecture

A positive integer n is a Giuga number if and only if it satisfies

n′ = n+ 1.

Or, if n is a Giuga number if and only if∑
p|n

1

p
−
∏
p|n

1

p
= 1.

So even if we have n′ = an + 1 for some a ∈ N, the conjecture says that if n is
Giuga, then a is always 1. The first few Giuga numbers are: 30, 858, 1722, 66198,
2214408306, 24423128562, 432749205173838, ..., and the corresponding a were all
1.
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